SnOx surface modified Sr2Fe1.5Mo0.5O6-δ cathode with enhanced electrocatalytic activities for direct CO2 electrolysis in solid oxide electrolysis cells

被引:2
作者
Wang, Enli [1 ,2 ]
Zhao, Liang [1 ]
Yang, Zhibin [2 ]
Liu, Changfei [1 ]
Wang, Sailong [1 ]
Yang, Ruizhi [1 ]
Jin, Chao [1 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[2] China Univ Min & Technol Beijing, Res Ctr Solid Oxide Fuel Cell, Beijing 100083, Peoples R China
关键词
Solid oxide electrolysis cells; CO2; electrolysis; Perovskite oxides cathode; Surface modification; SnOx; ELECTROCHEMICAL PERFORMANCE; FUEL ELECTRODE; REDUCTION; IMPREGNATION; SOEC;
D O I
10.1016/j.jcis.2024.11.142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface modification and/or reconstruction for perovskite oxides cathode is an efficient strategy to accelerate sluggish kinetics of CO2 reduction reaction (CO2RR) in solid oxide electrolysis cells (SOECs). Herein, active SnOx nanoparticles with average size of similar to 10 nm are loaded on the surface of Sr2Fe1.5Mo0.5O6-delta (SFM) cathode via a facile wet infiltration method. Benefiting from improved specific surface area, expended three phase boundaries, optimized CO2 adsorption/activation abilities, as well as additional oxygen vacancies, the as-prepared SOEC with the SFM@SnOx cathode delivers an enhanced current density of 0.691 A cm(-2) under an applied voltage of 1.5 V at 850 degrees C for the CO2 electrolysis, and successfully operates 100 h without any attenuation under 1.2 V at 800 degrees C. This work offers new insights into tailoring perovskite oxide cathode for the CO2 electrolysis in SOEC via a surface post-treatment strategy.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 37 条
  • [1] Abdullah M., 2023, Springer eBooks, P399, DOI [10.1007/978-3-031-20510-117, DOI 10.1007/978-3-031-20510-117]
  • [2] Bigdeli A., 2024, J. Data Sci. Intell. Syst., V2, P65
  • [3] Preparation of methanation catalysts for high temperature SOEC by β-cyclodextrin-assisted impregnation of nano-CeO2 with transition metal oxides
    Blaszczak, Patryk
    Mizera, Adrian
    Bochentyn, Beata
    Wang, Sea-Fue
    Jasinski, Piotr
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (03) : 1901 - 1916
  • [4] Boosting catalytic and CO2 adsorption ability by in situ Cu nanoparticle exsolution for solid oxide electrolysis cell cathode
    Cui, Wencan
    Yang, Xiaoxia
    Ma, Minjian
    Sun, Jiaxiang
    Ren, Rongzheng
    Xu, Chunming
    Qiao, Jinshuo
    Sun, Wang
    Sun, Kening
    Wang, Zhenhua
    [J]. CERAMICS INTERNATIONAL, 2023, 49 (16) : 27214 - 27221
  • [5] Effect of production system uncertainties on production forecast, energy demand, and carbon emissions
    Hohendorff Filho, J. C. V.
    Victorino, I. R. S.
    Bigdeli, A.
    Castro, M. S.
    Schiozer, D. J.
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [6] In-situ oxidation of Sn catalysts for long-term electrochemical CO2 reduction to formate
    Khiarak, Behnam Nourmohammadi
    Fell, Adam
    Anand, Nirmal
    Sadaf, Sharif Md.
    Dinh, Cao-Thang
    [J]. CATALYSIS TODAY, 2024, 426
  • [7] Review-Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies
    Kungas, Rainer
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [8] SnO2-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO2 to C2H4
    Lan, Yangchun
    Niu, Gaoqiang
    Wang, Fei
    Cui, Dehu
    Hu, Zhuofeng
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) : 36128 - 36136
  • [9] Enhancing Electrochemical CO2 Reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 Cathode for High-Temperature Solid Oxide Electrolysis Cells
    Lee, Seokhee
    Kim, Minkyu
    Lee, Kang Taek
    Irvine, John T. S.
    Shin, Tae Ho
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (24)
  • [10] Unlocking the Potential of A-Site Ca-Doped LaCo0.2Fe0.8O3-d: A Redox-Stable Cathode Material Enabling High Current Density in Direct CO2 Electrolysis
    Li, Haixia
    Wang, Wanhua
    Wang, Lucun
    Wang, Min
    Park, Ka-Young
    Lee, Taehee
    Heyden, Andreas
    Ding, Dong
    Chen, Fanglin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (37) : 43732 - 43744