Cross Attention-Based Multi-Scale Convolutional Fusion Network for Hyperspectral and LiDAR Joint Classification

被引:0
|
作者
Ge, Haimiao [1 ,2 ]
Wang, Liguo [3 ]
Pan, Haizhu [1 ,2 ]
Liu, Yanzhong [1 ,2 ]
Li, Cheng [1 ,2 ]
Lv, Dan [1 ,2 ]
Ma, Huiyu [1 ,2 ]
机构
[1] Qiqihar Univ, Coll Comp & Control Engn, Qiqihar 161000, Peoples R China
[2] Qiqihar Univ, Heilongjiang Key Lab Big Data Network Secur Detect, Qiqihar 161000, Peoples R China
[3] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
基金
中国国家自然科学基金;
关键词
HSI and LiDAR fusion classification; convolutional neural network; multi-scale feature extraction; cross attention;
D O I
10.3390/rs16214073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, deep learning-based multi-source data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, has gained significant attention in the field of remote sensing. However, the traditional convolutional neural network fusion techniques always provide poor extraction of discriminative spatial-spectral features from diversified land covers and overlook the correlation and complementarity between different data sources. Furthermore, the mere act of stacking multi-source feature embeddings fails to represent the deep semantic relationships among them. In this paper, we propose a cross attention-based multi-scale convolutional fusion network for HSI-LiDAR joint classification. It contains three major modules: spatial-elevation-spectral convolutional feature extraction module (SESM), cross attention fusion module (CAFM), and classification module. In the SESM, improved multi-scale convolutional blocks are utilized to extract features from HSI and LiDAR to ensure discriminability and comprehensiveness in diversified land cover conditions. Spatial and spectral pseudo-3D convolutions, pointwise convolutions, residual aggregation, one-shot aggregation, and parameter-sharing techniques are implemented in the module. In the CAFM, a self-designed local-global cross attention block is utilized to collect and integrate relationships of the feature embeddings and generate joint semantic representations. In the classification module, average polling, dropout, and linear layers are used to map the fused semantic representations to the final classification results. The experimental evaluations on three public HSI-LiDAR datasets demonstrate the competitiveness of the proposed network in comparison with state-of-the-art methods.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Pattern recognition of surface electromyography based on multi-scale convolutional neural network with attention mechanism
    Wang B.
    Zheng H.
    Jie J.
    Zhang M.
    Ke Y.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 293 - 301
  • [32] Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
    He, Xueqin
    Xu, Wenjie
    Yang, Jane
    Mao, Jianyao
    Chen, Sifang
    Wang, Zhanxiang
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [33] A Multi-Scale Cross-Fusion Medical Image Segmentation Network Based on Dual-Attention Mechanism Transformer
    Cui, Jianguo
    Wang, Liejun
    Jiang, Shaochen
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [34] A novel multi-scale convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [35] Handwritten/Printed Receipt Classification using Attention-Based Convolutional Neural Network
    Yang, Fan
    Jin, Lianwen
    Yang, Weixin
    Feng, Ziyong
    Zhang, Shuye
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 384 - 389
  • [36] Fusion of ConvLSTM and Multi-Attention Mechanism Network for Hyperspectral Image Classification
    Tang Ting
    Xin, Pan
    Luo Xiao-ling
    Gao Xiao-jing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2608 - 2616
  • [37] Multi-Scale Mixed Attention Network for CT and MRI Image Fusion
    Liu, Yang
    Yan, Binyu
    Zhang, Rongzhu
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaoming
    ENTROPY, 2022, 24 (06)
  • [38] An Efficient Attention-Based Convolutional Neural Network That Reduces the Effects of Spectral Variability for Hyperspectral Unmixing
    Jin, Baohua
    Zhu, Yunfei
    Huang, Wei
    Chen, Qiqiang
    Li, Sijia
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [39] Multi-scale convolutional attention network for lightweight image super-resolution
    Xie, Feng
    Lu, Pei
    Liu, Xiaoyong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [40] Attention-based Convolutional Neural Networks for Sentence Classification
    Zhao, Zhiwei
    Wu, Youzheng
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 705 - 709