Stabilizer free weak Galerkin finite element method;
Fourth order parabolic problem;
implicit theta-schemes;
FINITE-ELEMENT METHODS;
CAHN-HILLIARD EQUATION;
BIHARMONIC EQUATION;
APPROXIMATION;
D O I:
10.1016/j.cnsns.2024.108349
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this study, we solve the fourth-order parabolic problem by combining the implicit -schemes in time for E E [ 1 2 , 1] with the stabilizer free weak Galerkin (SFWG) method. The semi-discrete and full-discrete numerical schemes are proposed. And specifically, the full-discrete scheme is a first-order backward Euler scheme when = = 1 , and a second-order Crank-Nicolson scheme for = = 1 2 . Then, we determine the optimal convergence orders of the error in the 2 2 and 2 2 norms after analyzing the well-posedness of the schemes. The theoretical findings are validated by numerical experiments.
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Al-Taweel, Ahmed
Hussain, Saqib
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA