Numerical simulation on maximum likelihood estimation of diffusion processes

被引:0
|
作者
Wang, Jingyu [1 ,2 ]
Lai, Junfeng [1 ]
Yan, Zaizai [1 ]
机构
[1] Science College, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
[2] Science College, Qiqihaer University, Qiqihaer, Heilongjiang, China
来源
Metallurgical and Mining Industry | 2015年 / 7卷 / 03期
关键词
Differential equations - Numerical methods - Parameter estimation - Stochastic systems - Stochastic models - Diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider parametric estimation problem of a continuous type stochastic mathematical model (stochastic differential equation) in a wide engineering field. On analyzing the probability characteristics of process, the density function is determined by using Ito differential law. The maximum-likelihood estimating (MLE) algorithm of unknown parameter is obtained. The approximation is calculated by using numerical solution techniques for diffusion process. Finally, we consider three methods for solving the Cox-Ingersoll-Ross process as a numerical example. © Metallurgical and Mining Industry, 2015.
引用
收藏
页码:244 / 249
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation for Integrated Diffusion Processes
    Baltazar-Larios, Fernando
    Sorensen, Michael
    CONTEMPORARY QUANTITATIVE FINANCE: ESSAYS IN HONOUR OF ECKHARD PLATEN, 2010, : 407 - +
  • [2] ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR DIFFUSION PROCESSES
    Chang, Jinyuan
    Chen, Song Xi
    ANNALS OF STATISTICS, 2011, 39 (06): : 2820 - 2851
  • [3] Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
    Durham, GB
    Gallant, AR
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) : 297 - 316
  • [4] Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes - Comment
    Chib, S
    Shephard, N
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) : 325 - 327
  • [5] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710
  • [6] Variable bandwidth local maximum likelihood type estimation for diffusion processes
    Ming T. Tang
    Yun Y. Wang
    Advances in Difference Equations, 2018
  • [7] SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION IN NONLINEAR NONMARKOV DIFFUSION TYPE PROCESSES
    Bishwal, Jaya P. N.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (01): : 107 - 124
  • [8] MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth
    ANNALS OF STATISTICS, 2009, 37 (01): : 223 - 245
  • [9] Variable bandwidth local maximum likelihood type estimation for diffusion processes
    Tang, Ming T.
    Wang, Yun Y.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] MAXIMUM LIKELIHOOD ESTIMATION FOR MARKOV PROCESSES
    RAO, BLSP
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1972, 24 (02) : 333 - 345