An adapted Runge-Kutta-Nyström method for stiff oscillatory problems with two frequencies

被引:0
|
作者
机构
[1] Zhang, Yanwei
[2] Fang, Yonglei
来源
| 1600年 / ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan卷 / 07期
关键词
Algebra - Runge Kutta methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an explicit Runge-Kutta-Nystrom method is designed for the numerical integration of stiff oscillatory problems with two frequencies. The new method is of algebraic order five. Numerical experiments are carried out to illustrate the efficiency and robustness of our new method in comparison with some well-known methods in the recent literature. © 2013 ISSN 1881-803X.
引用
收藏
相关论文
共 50 条
  • [41] Two new classes of exponential Runge-Kutta integrators for efficiently solving stiff systems or highly oscillatory problems
    Wang, Bin
    Hu, Xianfa
    Wu, Xinyuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (9-10) : 1031 - 1049
  • [42] Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods
    T. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Mediterranean Journal of Mathematics, 2016, 13 : 2271 - 2285
  • [43] RUNGE-KUTTA ALGORITHMS FOR OSCILLATORY PROBLEMS
    BETTIS, DG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04): : 699 - 704
  • [44] Third-order composite Runge-Kutta method for stiff problems
    Ahmad, RR
    Yaacob, N
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (10) : 1221 - 1226
  • [45] 求解二阶刚性微分方程的对角隐式Runge-Kutta-Nystrm方法(英文)
    赵永祥
    肖爱国
    唐玲娟
    应用数学, 2010, 23 (02) : 450 - 460
  • [46] An embedded explicit Runge-Kutta-Nystrom method for solving oscillatory problems
    Senu, N.
    Suleiman, M.
    Ismail, F.
    PHYSICA SCRIPTA, 2009, 80 (01)
  • [47] The generalization of diagonally implicit Runge–Kutta–Nyström method with controllable numerical dissipation for structural dynamics
    Yazhou Wang
    Xiaodai Xue
    Tao Wang
    Ningning Xie
    Hongjin Jia
    Zhubing Hu
    Kumar Tamma
    Nonlinear Dynamics, 2024, 112 : 525 - 559
  • [48] Runge–Kutta–Nyström‐type parallel block predictor–corrector methods
    Nguyen Huu Cong
    Karl Strehmel
    Rüdiger Weiner
    Helmut Podhaisky
    Advances in Computational Mathematics, 1999, 10 : 115 - 133
  • [49] Multidimensional adapted Runge-Kutta-Nystrom methods for oscillatory systems
    Wu, Xinyuan
    Wang, Bin
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 1955 - 1962
  • [50] Diagonally implicit Runge-Kutta methods for stiff problems
    Skvortsov L.M.
    Computational Mathematics and Mathematical Physics, 2006, 46 (12) : 2110 - 2123