Long-term high-precision monitoring system for laser parameters in large-aperture dual-wavelength LiDAR

被引:0
作者
Ma, Bin [1 ,2 ]
Zheng, Xiangyue [1 ,2 ]
Li, Jing [3 ]
Pan, Chao [3 ]
Li, Zuohan [3 ]
He, Chunling [1 ,2 ]
Yan, Dongyue [1 ,2 ]
Chen, Yifan [1 ,2 ]
Pan, Qiaofei [1 ,2 ]
Hou, Zhiqiang [1 ,2 ]
Wang, Zhanshan [1 ,2 ]
机构
[1] Tongji Univ, Inst Precis Opt Engn, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, MOE Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[3] Beijing Res Inst Telemetry, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
LiDAR; Stability of laser parameters; Large-aperture dual-wavelength laser; Monitoring system; DEGRADATION; RELIABILITY; ABERRATION; ARRHENIUS; STABILITY; ERROR; MODEL;
D O I
10.1016/j.optlastec.2024.112200
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In specific LiDAR application scenarios, maintaining laser systems is either highly challenging or practically infeasible. Therefore, it is crucial to rigorously evaluate laser stability prior to operational deployment. This paper presents a high-precision, long-term monitoring system for laser parameters in large-aperture, dualwavelength LiDAR. The system integrates several modules designed to monitor critical laser parameters, as well as several environmental monitoring modules to track fluctuations in environmental parameters. Through the implementation of a diverse set of hardware and software operational strategies, the system guarantees secure and stable, unattended monitoring of LiDAR stability. By correlating laser parameters with environmental variations, this system offers a comprehensive and precise solution for assessing the reliability and stable operation capability of LiDAR systems.
引用
收藏
页数:7
相关论文
共 43 条
  • [1] Pointing Verification Method for Spaceborne Lidars
    Amediek, Axel
    Wirth, Martin
    [J]. REMOTE SENSING, 2017, 9 (01):
  • [2] [Anonymous], 2022, ISO 12005-2022
  • [3] [Anonymous], ISO 11146-1:2005(E), DOI [10.1016/j.optlaseng.2017.09.005, DOI 10.1016/J.OPTLASENG.2017.09.005]
  • [4] Bi Jin-zi, 2008, Infrared Laser Engineering, V37, P818
  • [5] Analysis of the effect of vibration on vehicle LIDAR system
    Cao, Jiandong
    Cheng, Xiaojin
    Shang, Jianhua
    He, Yan
    [J]. OPTICAL ENGINEERING, 2020, 59 (11)
  • [6] Multiwavelength lidar for measurements of atmospheric aerosol
    Chudzynski, S
    Czyzewski, A
    Ernst, K
    Karasinski, G
    Kolacz, K
    Pietruczuk, A
    Skubiszak, W
    Stacewicz, T
    Stelmaszczyk, K
    Szymanski, A
    [J]. OPTICS AND LASERS IN ENGINEERING, 2002, 37 (2-3) : 91 - 99
  • [7] Analysis of the beam-pointing stability in the high power laser system
    Ding, Lei
    Li, Sensen
    Lu, Zhiwei
    Wang, Yulei
    Zhu, Chengyu
    Chen, Yi
    Du, Pengyuan
    Zhang, Hongyue
    Cui, Can
    Zhou, Luoxian
    Yuan, Hang
    Bai, Zhenxu
    Wang, Yirui
    Tan, Tan
    [J]. OPTIK, 2016, 127 (15): : 6056 - 6061
  • [8] Investigations on the beam pointing stability of a pulsed optical parametric oscillator
    Fix, Andreas
    Stoeckl, Christian
    [J]. OPTICS EXPRESS, 2013, 21 (09): : 10720 - 10730
  • [9] High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror
    Gong, Ke-Ling
    Xu, Jian
    Zhang, Lin
    Guo, Ya-Ding
    Wang, Bao-Shan
    Li, Yang
    Li, Shuai
    Chen, Zhong-Zheng
    Yuan, Lei
    Kou, Yang
    Xu, Yi-Ting
    Peng, Qin-Jun
    Xu, Zu-Yan
    [J]. CHINESE PHYSICS LETTERS, 2019, 36 (07)
  • [10] Generic vibration criteria for vibration-sensitive equipment
    Gordon, CG
    [J]. OPTOMECHANICAL ENGINEERING AND VIBRATION CONTROL, 1999, 3786 : 22 - 33