Hollow size optimization of α-MoC modified nitrogen-doped carbon spheres for efficient microwave absorption

被引:0
|
作者
Liu, Shiqiao [1 ]
Fang, Debao [1 ]
Xiong, Zhiyong [2 ]
Jin, Haibo [1 ,2 ]
Su, Yuefeng [2 ]
Feng, Caihong [2 ]
Li, Ning [2 ]
Wang, Chengzhi [1 ,2 ]
Li, Jingbo [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Mat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Zhuhai Campus,Jinfeng Rd 6,Xiangzhou 10 Dist, Zhuhai 519085, Peoples R China
基金
中国国家自然科学基金;
关键词
Microwave absorption; Hollow nanosphere structures; alpha-MoC nanoparticles; Dielectric loss; PERFORMANCE; SHELL; MICROSPHERES; NANOCOMPOSITE; NANOPARTICLES; NANOSHEETS; DESIGN;
D O I
10.1016/j.apsusc.2024.161742
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, electromagnetic pollution has become a serious concern. Existing microwave absorbers cannot achieve the goals of being lightweight, broadband, and strongly absorbing simultaneously. The design of hollow structures has attracted a great deal of attention because they can optimize impedance matching and enhance microwave attenuation while reducing mass. However, the effect of the hollow size on microwave absorption is not yet clear. In this study, we synthesized nitrogen-doped hollow carbon microspheres embedded with alpha-MoC nanoparticles (alpha-MoC/C, MNC) using template pyrolysis. The hollow size of MNC nanospheres was successfully controlled by adjusting the size of carboxylated PS nanospheres. The hollow structure improves microwave absorption in MNC nanospheres by facilitating the construction of the 3D conductive network. This prevents carbon aggregation, improves impedance matching, increases conductive loss, and promotes multiple reflections and scattering. Additionally, the alpha-MoC nanoparticles embedded in the carbon shells generate abundant nanointerfaces, which promote interfacial polarization and further attenuate the electromagnetic waves. The MNC3 sample with the carbon sphere size of around 300 nm achieved the best reflection loss of -58.9 dB (3.16 mm thickness) and an effective absorption bandwidth of 4.80 GHz (2.07 mm thickness). This work demonstrates that the microwave absorption capacity of nanoscale carbonaceous spheres is effectively enhanced by adjusting the hollow size, providing the basis for designing and optimizing wave-absorbing materials by hollow structure.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nitrogen-doped hollow carbon spheres for supercapacitors application
    Chen, Aibing
    Li, Yunqian
    Yu, Yifeng
    Ren, Shaofeng
    Wang, Yuying
    Xia, Kechan
    Li, Shuhui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 878 - 884
  • [2] In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts
    Zhou, Tingsheng
    Zhou, Yao
    Ma, Ruguang
    Zhou, Zhenzhen
    Liu, Guanghui
    Liu, Qian
    Zhu, Yufang
    Wang, Jiacheng
    NANOSCALE, 2016, 8 (42) : 18134 - 18142
  • [3] Exploring nitrogen doped mesoporous carbon spheres for superior microwave absorption
    Qamar, Tauqeer Haidar
    Batool, Irum
    ul Hassan, Sibt
    Ahmed, Nouman
    Jamali, Sain Bux
    Shafi, Sana
    Kausar, Khadija
    Huang, Shengxiang
    Deng, Lianwen
    DIAMOND AND RELATED MATERIALS, 2024, 147
  • [4] Nitrogen-doped hollow carbon spheres wrapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol
    Yi, Yinhui
    Zhu, Gangbing
    Sun, Heng
    Sun, Jianfan
    Wu, Xiangyang
    BIOSENSORS & BIOELECTRONICS, 2016, 86 : 62 - 67
  • [5] Nitrogen-doped carbon nanofibers with sulfur heteroatoms for improving microwave absorption
    Jiang, Yuliang
    Fu, Xueyan
    Tian, Rui
    Zhang, Wenjin
    Du, Hongyan
    Fu, Chengrui
    Zhang, Zidong
    Xie, Peitao
    Xin, Jiahao
    Fan, Runhua
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (14) : 5832 - 5842
  • [6] Construction of hollow core-shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption
    Luo, Hui
    Ma, Beibei
    Chen, Fu
    Zhang, Shanshan
    Wang, Xian
    Xiong, Yao
    Cheng, Yongzhi
    Gong, Rongzhou
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 181 - 191
  • [7] Cobalt/Nitrogen-Doped carbon hollow spheres for highly efficient degradation of tinidazole with peroxymonosulfate
    Li, Zhenliang
    Yuan, Shaoying
    Zhang, Zhongrui
    Liu, Shuang
    Guo, Haoran
    Qi, Xiaoni
    Wu, Zhiqiang
    Guo, Jing
    MATERIALS RESEARCH BULLETIN, 2024, 175
  • [8] Performance of Nitrogen-doped Hollow Carbon Spheres as Oxidase Mimic
    Zheng Yanning
    Ji Junrong
    Liang Xueling
    Lai Zhengjie
    Cheng Qifan
    Liao Dankui
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (05) : 527 - 534
  • [9] Hierarchically nitrogen-doped carbon hollow microspheres assembled with loose and porous magnetic carbon sheets for enhanced microwave absorption
    Ma, Ziqian
    Liu, Minjie
    Li, Bei
    Yan, Feng
    Chen, Yujin
    Zhang, Xitian
    Zhu, Chunling
    CARBON, 2023, 212
  • [10] Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption
    Cheng, Yan
    Li, Zhaoyong
    Li, Yong
    Dai, Sisi
    Ji, Guangbin
    Zhao, Huanqin
    Cao, Jieming
    Du, Youwei
    CARBON, 2018, 127 : 643 - 652