Exploring the potential of MXene nanohybrids as high-performance anode materials for lithium-ion batteries

被引:2
作者
Bandaru, Narendra [1 ]
Reddy, Ch. Venkata [2 ]
Vallabhudasu, Kalyani [3 ]
Vijayalakshmi, Mule [2 ]
Reddy, Kakarla Raghava [4 ]
Cheolho, Bai [2 ]
Shim, Jaesool [2 ]
Aminabhavi, Tejraj M. [5 ,6 ]
机构
[1] Aarhus Univ, Dept Elect & Comp Engn, DK-8200 Aarhus, Denmark
[2] Yeungnam Univ, Sch Engn, Gyongsan 712749, South Korea
[3] Natl Inst Pharmaceut Educ & Res NIPER, Dept Pharmaceut Anal, Hyderabad, Telangana, India
[4] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[5] KLE Technol Univ, Ctr Energy & Environm, Sch Adv Sci, Hubballi 580031, Karnataka, India
[6] Korea Univ, Seoul, South Korea
关键词
MXenes; Heterostructured nanohybrids; Electrode materials; Electrochemical properties; Lithium-ion batteries; Energy storage; TITANIUM CARBIDE MXENE; LI-ION; FACILE SYNTHESIS; TI2CTX MXENE; TI3C2TX; CAPACITY; COMPOSITE; ELECTRODES; GRAPHENE; LAYER;
D O I
10.1016/j.cej.2024.157317
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-ion batteries (LIBs) are an integral part of modern life, powering diverse applications from transportable devices to electric vehicles. Efficacy of LIBs depends on the performance of their components with anode material playing the pivotal role. Traditional graphite anodes have limitations in capacity and rate capability. This review comprehensively discusses utilization of MXene-based composites as anode materials in LIBs. MXene composites exhibit versatile lithium storage mechanisms, involving intercalation and/or conversion reactions. Pure MXenes offer advantages of high capacity and cycling stability having challenges due to limited conductivity and mechanical fragility, restricting their practical utility, thereby affecting their performance in solid-state polymer electrolytes (SPEs). MXene composites overcome unsystematic dispersal and accumulation issues of pure MXene. MXenes in composite form could increase LIBs performance by overcoming limitations of pure MXenes, enabling breakthroughs in energy storage. The review covers different MXene composites viz., MXene/graphene, MXene/ silicon, MXene/tin, MXene/carbon, MXene/metal oxide, and MXene/conducting polymer providing a holistic overview. Their performance, cycling stability, and rate capability are discussed to cover challenges and future prospects.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Qin, Yanliang
    Wang, Bowen
    Jiang, Sipeng
    Jiang, Qingsong
    Huang, Chenghao
    Chen, Hai Chao
    IONICS, 2020, 26 (07) : 3315 - 3323
  • [32] MXene-loaded sea urchin-like CoP as anode materials for high-performance lithium-ion batteries
    Gong, Zhe
    Jiang, Qiushi
    Bai, Wende
    Wang, Pengfei
    Gao, Musen
    Cao, Dianxue
    Zhou, Mingdong
    Sun, Yaguang
    Zhu, Kai
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [33] Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium-ion batteries
    Wu, Hao
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    JOURNAL OF POWER SOURCES, 2014, 246 : 198 - 203
  • [34] Co-based metal-organic framework and its derivatives as high-performance anode materials for lithium-ion batteries
    Gou, Lei
    Ma, Li
    Zhao, Ming-Juan
    Liu, Peng-Gang
    Wang, Xue-Dong
    Fan, Xiao-Yong
    Li, Dong-Lin
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (02) : 1529 - 1538
  • [35] Construction of SiOx-SnO2 heterojunction and surface coating to achieve high-performance anode materials for lithium-ion batteries
    Ren, Hai-lin
    Su, Yang
    Zhao, Shuai
    Li, Cheng-wei
    Wang, Xiao-min
    Li, Bo-han
    ELECTROCHIMICA ACTA, 2025, 514
  • [36] SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries
    Mei, Jing
    Han, Jinlu
    Wu, Fujun
    Pan, Qichang
    Zheng, Fenghua
    Jiang, Juantao
    Huang, Youguo
    Wang, Hongqiang
    Liu, Kui
    Li, Qingyu
    FRONTIERS IN CHEMISTRY, 2023, 10
  • [37] Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries
    Wang, Lingyan
    Zhuo, Linhai
    Cheng, Haiyang
    Zhang, Chao
    Zhao, Fengyu
    JOURNAL OF POWER SOURCES, 2015, 283 : 289 - 299
  • [38] Theoretical investigation of properties of boron nitride nanocages and nanotubes as high-performance anode materials for lithium-ion batteries
    Najafi, Meysam
    CANADIAN JOURNAL OF CHEMISTRY, 2017, 95 (06) : 687 - 690
  • [39] Two Birds with One Stone: Prelithiated Two-Dimensional Nanohybrids as High-Performance Anode Materials for Lithium-Ion Batteries
    Wei, Sichen
    Fu, Yu
    Roy, Pinku
    Tong, Xiao
    Yue, Hongyan
    Liu, Maomao
    Jaiswal, Hemendra Nath
    Shahi, Simran
    Gata, Yannick Iniatius
    Butler, Tony
    Li, Huamin
    Jia, Quanxi
    Yao, Fei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (31) : 35673 - 35681
  • [40] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770