Reactive Power Flow Convergence Adjustment Based on Deep Reinforcement Learning

被引:0
作者
Zhang W. [1 ]
Ji B. [2 ]
He P. [1 ]
Wang N. [1 ]
Wang Y. [1 ]
Zhang M. [2 ]
机构
[1] Nanjing Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd., Nanjing
[2] College of Energy and Electrical Engineering, Hohai University, Nanjing
来源
Energy Engineering: Journal of the Association of Energy Engineering | 2023年 / 120卷 / 09期
关键词
deep reinforcement learning; node type switching; Power flow calculation; reactive power flow convergence;
D O I
10.32604/ee.2023.026504
中图分类号
学科分类号
摘要
Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions. To address the unsolvable power flow problem caused by the reactive power imbalance, a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed. The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment. For the non-convergence power flow, the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes by node type switching. And the quantified reactive power non-convergence index is acquired. Then, the action space and reward value of deep reinforcement learning are reasonably designed and the adjustment strategy is obtained by taking the reactive power non-convergence index as the algorithm state space. Finally, the effectiveness of the power flow convergence adjustment algorithm is verified by an actual power grid system in a province. © 2023, Tech Science Press. All rights reserved.
引用
收藏
页码:2177 / 2192
页数:15
相关论文
共 50 条
  • [21] Deep reinforcement learning-based network for optimized power flow in islanded DC microgrid
    Pandia Rajan Jeyaraj
    Siva Prakash Asokan
    Aravind Chellachi Kathiresan
    Edward Rajan Samuel Nadar
    Electrical Engineering, 2023, 105 : 2805 - 2816
  • [22] Deep reinforcement learning-based network for optimized power flow in islanded DC microgrid
    Jeyaraj, Pandia Rajan
    Asokan, Siva Prakash
    Kathiresan, Aravind Chellachi
    Nadar, Edward Rajan Samuel
    ELECTRICAL ENGINEERING, 2023, 105 (5) : 2805 - 2816
  • [23] Power Adjustment Method for Transmission Section in Power Grid Combining Deep Reinforcement Learning and Artificial Experience
    Yang X.
    Yan J.
    Liu J.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (15): : 133 - 141
  • [24] Fault Identification in Power Network Based on Deep Reinforcement Learning
    Li, Mengshi
    Zhang, Huanming
    Ji, Tianyao
    Wu, Q. H.
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (03): : 721 - 731
  • [25] Multi-timescale Deep Reinforcement Learning for Reactive Power Optimization of Distribution Network
    Hu D.
    Peng Y.
    Wei W.
    Xiao T.
    Cai T.
    Xi W.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (14): : 5034 - 5044
  • [26] Reward design for intelligent deep reinforcement learning based power flow control using topology optimization
    Hrgovic, Ivana
    Pavic, Ivica
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2025, 41
  • [27] Deep reinforcement learning-based reactive trajectory planning method for UAVs
    Cao, Lijia
    Wang, Lin
    Liu, Yang
    Xu, Weihong
    Geng, Chuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2024, 238 (10) : 1018 - 1037
  • [28] Load balancing and topology dynamic adjustment strategy for power information system network: a deep reinforcement learning-based approach
    Liao, Xiao
    Bao, Beifang
    Cui, Wei
    Liu, Di
    FRONTIERS IN ENERGY RESEARCH, 2024, 11
  • [29] Routing Strategy for SDN Large Flow Based on Deep Reinforcement Learning
    Ke, Yu
    Wang, Junli
    Yan, Chungang
    Yao, Jiamin
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 523 - 530
  • [30] Power System Security Correction Control Based on Deep Reinforcement Learning
    Wang Y.
    Li L.
    Yu Y.
    Yang N.
    Liu M.
    Li T.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (12): : 121 - 129