Efficient Integration of Reinforcement Learning in Graph Neural Networks-Based Recommender Systems

被引:0
|
作者
Sharifbaev, Abdurakhmon [1 ]
Mozikov, Mikhail [2 ,3 ]
Zaynidinov, Hakimjon [1 ]
Makarov, Ilya [2 ,4 ]
机构
[1] Tashkent Univ Informat Technol, Dept Artificial Intelligence, Tashkent 100200, Uzbekistan
[2] AIRI, Moscow 105064, Russia
[3] NUST MISiS, Min Inst, Moscow 119049, Russia
[4] ISP RAS Res Ctr Trusted Artificial Intelligence, Moscow 101000, Russia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Recommender systems; Graph neural networks; Reinforcement learning; Training; Accuracy; Optimization; Heuristic algorithms; Extraterrestrial measurements; Decision making; Adaptation models; Recommendation system; graph neural networks; reinforcement learning; double deep Q-networks;
D O I
10.1109/ACCESS.2024.3516517
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommendation systems have advanced significantly in recent years, achieving greater accuracy and relevance. However, traditional approaches often suffer from a mismatch between the losses used during training and the metrics used for evaluation. Models are typically trained to minimize a loss function, while their effectiveness during testing is assessed using different ranking metrics, leading to suboptimal recommendation quality. To address this limitation, reinforcement learning (RL) has emerged as a promising solution. Although RL has been applied in recommendation systems, the integration of graph neural networks (GNNs) within this framework remains underexplored. In this study, we bridge this gap by integrating GNNs and RL to enhance ranking accuracy and recommendation quality. We propose two key innovations: 1) leveraging learnable graphs to embed user-item interactions, with RL optimizing user rewards to improve ranking quality, and 2) modifying GNN architectures with skip connections to enhance recommendation accuracy while reducing training time and improving convergence. Our comprehensive analysis on multiple real-world datasets demonstrates the impact of different GNN architectures and their modifications on the effectiveness of recommendation systems. Our findings demonstrate the potential of combining GNNs and RL to overcome the limitations of traditional recommendation models and achieve state-of-the-art performance, with XSimGCL-skip achieving an average improvement of approximately 2.5% over baseline methods.
引用
收藏
页码:189439 / 189448
页数:10
相关论文
共 50 条
  • [41] Graph convolutional neural networks-based assessment of students' collaboration ability
    Lin, Jinjiao
    Gao, Tianqi
    Wen, Yuhua
    Yu, Xianmiao
    You, Bizhen
    Yin, Yanfang
    Zhao, Yanze
    Pu, Haitao
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (28):
  • [42] An efficient wavelet/neural networks-based face detection algorithm
    Mohabbati, Bardia
    Kasaei, Shohreh
    2005 1ST IEEE/IFIP INTERNATIONAL CONFERENCE IN CENTRAL ASIA ON INTERNET (ICI), 2005, : 174 - 178
  • [43] Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial
    Chen, Mingzhe
    Challita, Ursula
    Saad, Walid
    Yin, Changchuan
    Debbah, Merouane
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (04): : 3039 - 3071
  • [44] A Survey on Reinforcement Learning and Deep Reinforcement Learning for Recommender Systems
    Rezaei, Mehrdad
    Tabrizi, Nasseh
    DEEP LEARNING THEORY AND APPLICATIONS, DELTA 2023, 2023, 1875 : 385 - 402
  • [45] An efficient leakage power optimization framework based on reinforcement learning with graph neural network
    Cao, Peng
    Dong, Yuhan
    Zhang, Zhanhua
    Ding, Wenjie
    Wang, Jiahao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] Reinforcement learning-based secure training for adversarial defense in graph neural networks
    An, Dongdong
    Yang, Yi
    Gao, Xin
    Qi, Hongda
    Yang, Yang
    Ye, Xin
    Li, Maozhen
    Zhao, Qin
    NEUROCOMPUTING, 2025, 630
  • [47] A Survey on Reinforcement Learning for Recommender Systems
    Lin, Yuanguo
    Liu, Yong
    Lin, Fan
    Zou, Lixin
    Wu, Pengcheng
    Zeng, Wenhua
    Chen, Huanhuan
    Miao, Chunyan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13164 - 13184
  • [48] Improved Graph Convolutional Neural Networks-based Cellular Network Fault Diagnosis
    Gao, Zongzhen
    Liu, Wenlai
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [49] Neural networks-based composite learning control for robotic systems with predefined time error constraints
    Zhang, Yu
    Xu, Zihan
    Chen, Jiannan
    Zhao, Licui
    Wang, Xinyu
    Hua, Changchun
    NEUROCOMPUTING, 2024, 608
  • [50] Graph neural networks-based spatiotemporal prediction of photovoltaic power: a comparative study
    Dairi Abdelkader
    Harrou Fouzi
    Khaldi Belkacem
    Sun Ying
    Neural Computing and Applications, 2025, 37 (6) : 4769 - 4795