Efficient Integration of Reinforcement Learning in Graph Neural Networks-Based Recommender Systems

被引:0
作者
Sharifbaev, Abdurakhmon [1 ]
Mozikov, Mikhail [2 ,3 ]
Zaynidinov, Hakimjon [1 ]
Makarov, Ilya [2 ,4 ]
机构
[1] Tashkent Univ Informat Technol, Dept Artificial Intelligence, Tashkent 100200, Uzbekistan
[2] AIRI, Moscow 105064, Russia
[3] NUST MISiS, Min Inst, Moscow 119049, Russia
[4] ISP RAS Res Ctr Trusted Artificial Intelligence, Moscow 101000, Russia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Recommender systems; Graph neural networks; Reinforcement learning; Training; Accuracy; Optimization; Heuristic algorithms; Extraterrestrial measurements; Decision making; Adaptation models; Recommendation system; graph neural networks; reinforcement learning; double deep Q-networks;
D O I
10.1109/ACCESS.2024.3516517
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommendation systems have advanced significantly in recent years, achieving greater accuracy and relevance. However, traditional approaches often suffer from a mismatch between the losses used during training and the metrics used for evaluation. Models are typically trained to minimize a loss function, while their effectiveness during testing is assessed using different ranking metrics, leading to suboptimal recommendation quality. To address this limitation, reinforcement learning (RL) has emerged as a promising solution. Although RL has been applied in recommendation systems, the integration of graph neural networks (GNNs) within this framework remains underexplored. In this study, we bridge this gap by integrating GNNs and RL to enhance ranking accuracy and recommendation quality. We propose two key innovations: 1) leveraging learnable graphs to embed user-item interactions, with RL optimizing user rewards to improve ranking quality, and 2) modifying GNN architectures with skip connections to enhance recommendation accuracy while reducing training time and improving convergence. Our comprehensive analysis on multiple real-world datasets demonstrates the impact of different GNN architectures and their modifications on the effectiveness of recommendation systems. Our findings demonstrate the potential of combining GNNs and RL to overcome the limitations of traditional recommendation models and achieve state-of-the-art performance, with XSimGCL-skip achieving an average improvement of approximately 2.5% over baseline methods.
引用
收藏
页码:189439 / 189448
页数:10
相关论文
共 50 条
  • [21] TransGNN: Harnessing the Collaborative Power of Transformers and Graph Neural Networks for Recommender Systems
    Zhang, Peiyan
    Yan, Yuchen
    Zhang, Xi
    Li, Chaozhuo
    Wang, Senzhang
    Huang, Feiran
    Kim, Sunghun
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1285 - 1295
  • [22] Graph Neural Networks for Relational Inductive Bias in Vision-based Deep Reinforcement Learning of Robot Control
    Oliva, Marco
    Banik, Soubarna
    Josifovski, Josip
    Knoll, Alois
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Autonomous air combat decision making via graph neural networks and reinforcement learning
    Lin Huo
    Chudi Wang
    Yue Han
    Scientific Reports, 15 (1)
  • [24] Beyond-accuracy: a review on diversity, serendipity, and fairness in recommender systems based on graph neural networks
    Duricic, Tomislav
    Kowald, Dominik
    Lacic, Emanuel
    Lex, Elisabeth
    FRONTIERS IN BIG DATA, 2023, 6
  • [25] Interactive Recommender System via Knowledge Graph-enhanced Reinforcement Learning
    Zhou, Sijin
    Dai, Xinyi
    Chen, Haokun
    Zhang, Weinan
    Ren, Kan
    Tang, Ruiming
    He, Xiuqiang
    Yu, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 179 - 188
  • [26] PyRecGym: A Reinforcement Learning Gym for Recommender Systems
    Shi, Bichen
    Ozsoy, Makbule Gulcin
    Hurley, Neil
    Smyth, Barry
    Tragos, Elias Z.
    Geraci, James
    Lawlor, Aonghus
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 491 - 495
  • [27] Graph Neural Networks and Deep Reinforcement Learning-Based Resource Allocation for V2X Communications
    Ji, Maoxin
    Wu, Qiong
    Fan, Pingyi
    Cheng, Nan
    Chen, Wen
    Wang, Jiangzhou
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (04): : 3613 - 3628
  • [28] User Tampering in Reinforcement Learning Recommender Systems
    Kasirzadeh, Atoosa
    Evans, Charles
    PROCEEDINGS OF THE 2023 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2023, 2023, : 58 - 69
  • [29] REVEAL 2022: Reinforcement Learning-Based Recommender Systems at Scale
    Li, Ying
    Basilico, Justin
    Raimond, Yves
    Dimakopoulou, Maria
    Liaw, Richard
    Bailey, Paige
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 684 - 685
  • [30] An obstacle avoidance-specific reinforcement learning method based on fuzzy attention mechanism and heterogeneous graph neural networks
    Zhang, Feng
    Xuan, Chengbin
    Lam, Hak-Keung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130