Two efficient iteration methods for solving the absolute value equations

被引:0
|
作者
Yu, Xiaohui [1 ]
Wu, Qingbiao [2 ]
机构
[1] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute value equation; SOR-like method; Convergence analysis; Optimal parameters; COMPLEMENTARITY;
D O I
10.1016/j.apnum.2024.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 50 条
  • [41] A New Efficient Method for Absolute Value Equations
    Guo, Peng
    Iqbal, Javed
    Ghufran, Syed Muhammad
    Arif, Muhammad
    Alhefthi, Reem K.
    Shi, Lei
    MATHEMATICS, 2023, 11 (15)
  • [42] Exact and inexact Douglas-Rachford splitting methods for solving large-scale sparse absolute value equations
    Chen, Cairong
    Yu, Dongmei
    Han, Deren
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 1036 - 1060
  • [43] AN INERTIAL INVERSE-FREE DYNAMICAL SYSTEM FOR SOLVING ABSOLUTE VALUE EQUATIONS
    Yu, Dongmei
    Chen, Cairong
    Yang, Yinong
    Han, Deren
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (04) : 2549 - 2559
  • [44] The new iteration algorithm for absolute value equation
    Ke, Yifen
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [45] A CHORD-ZHANG NEURAL NETWORK MODEL FOR SOLVING ABSOLUTE VALUE EQUATIONS
    Cui, Lu-Bin
    Hu, Qing
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (01): : 77 - 89
  • [46] A Newton-type technique for solving absolute value equations
    Khan, Alamgir
    Iqbal, Javed
    Akgul, Ali
    Ali, Rashid
    Du, Yuting
    Hussain, Arafat
    Nisar, Kottakkaran Sooppy
    Vijayakumar, V.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 291 - 296
  • [47] Neurodynamic approaches for solving absolute value equations and circuit implementation
    Yu, Dongmei
    Zhang, Gehao
    Ma, Tiange
    CHAOS SOLITONS & FRACTALS, 2025, 190
  • [48] An Optimized AOR Iterative Method for Solving Absolute Value Equations
    Jahromi, Alireza Fakharzadeh
    Shams, Nafiseh Naseri
    FILOMAT, 2021, 35 (02) : 459 - 476
  • [49] The neural network models with delays for solving absolute value equations
    Yu, Dongmei
    Zhang, Gehao
    Chen, Cairong
    Han, Deren
    NEUROCOMPUTING, 2024, 589
  • [50] Two new fixed point iterative schemes for absolute value equations
    Ali, Rashid
    Pan, Kejia
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 303 - 314