Advancing rule learning in knowledge graphs with structure-aware graph transformer

被引:0
|
作者
Xu, Kang [1 ]
Chen, Miqi [1 ]
Feng, Yifan [1 ]
Dong, Zhenjiang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Rule learning; Knowledge graph reasoning; Graph neural networks;
D O I
10.1016/j.ipm.2024.103976
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure- aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.
引用
收藏
页数:16
相关论文
empty
未找到相关数据