Fabrication of 3D bioactive melt electrowriting composite scaffold with high osteogenic potential

被引:2
|
作者
Abdal-hay, Abdalla [1 ]
Kocak-Oztug, Necla Asli [1 ,2 ]
Sheikh, Faheem A. [3 ]
Han, Pingping [1 ]
Anwar, Saqib [4 ]
Fournier, Benjamin P. J. [5 ,6 ]
Ivanovski, Saso [1 ]
机构
[1] Univ Queensland, Sch Dent, 288 Herston Rd, Herston, Qld 4006, Australia
[2] Istanbul Univ, Fac Dent, Dept Periodontol, TR-34116 Istanbul, Turkiye
[3] Univ Kashmir, Dept Nanotechnol, Nanostruct & Biomimet Lab, Hazratbal 190006, Jammu & Kashmir, India
[4] King Saud Univ, Coll Engn, Ind Engn Dept, Riyadh 11421, Saudi Arabia
[5] Univ Paris Cite, Sorbonne Univ, Ctr Rech Cordeliers, Inserm, F-75006 Paris, France
[6] Univ Paris Cite, Dent Fac, Dept Oral Biol, Paris, France
关键词
Biocompatibility; Hydroxyapatite; Scaffolds; Poly epsilon-caprolactone (PCL); Tissue engineering; IN-VITRO; HYDROXYAPATITE; DIFFERENTIATION; CELLS;
D O I
10.1016/j.colsurfb.2024.114270
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A key challenge in using melt electrowriting (MEW) technology is incorporating large amounts of bioactive inorganic materials, such as hydroxyapatite (HA). In the present study, following optimization of the fabrication parameters, 40 %-HA (HA40) nanoparticles were pre-mixed into medical-grade polycaprolactone (PCL) and processed using the MEW (MEW) technique to mimic the structure and function of the natural extracellular matrix (ECM) for bone regeneration. The HA40 fibrous composite scaffolds showed continuous writing and obtained a well-connected and orderly stacked fibre with a small diameter size (67 +/- 8.5 mu m). A major result of the present study was the successful enrichment and accumulation of the HA particles, which mostly occurred on the MEW fibre external surfaces. This design allows for direct interfacial interaction with human periodontal ligament cells (hPDLCs). We systematically investigated the behaviour and function of hPDLCs on the HA40 composite scaffold, alongside parameters related to mineralization. The HA40 scaffold demonstrated significantly higher metabolic activity and enhanced expression of osteopontin compared to PCL-only scaffolds, as well as increased levels of ALP and COL1. The study's findings demonstrate that bioactive composite scaffolds, incorporating 40 % HA into m-PCL via MEW, effectively enhance the biological response of the ECM and are promising for potential applications in bone regeneration.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fabrication of 3D melt electrowritting multiphasic scaffold with bioactive and osteoconductivite functionalities for periodontal regeneration
    Farag, Amro
    Abdal-hay, Abdalla
    Han, Pingping
    Ivanovski, Saso
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 8015 - 8021
  • [2] Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization
    Distler, Thomas
    Fournier, Niklas
    Gruenewald, Alina
    Polley, Christian
    Seitz, Hermann
    Detsch, Rainer
    Boccaccini, Aldo R.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):
  • [3] Melt Electrowriting: A Promising 3D Printing Technology for Cartilage and Osteochondral Repair
    Zhou, Sha
    Xing, Jiyao
    Sun, Li
    Hu, Xiao
    Liu, Ting
    Liu, Qing
    Zhang, Zongying
    Hao, Minglu
    Liang, Bing
    Xing, Dongming
    ADVANCED THERAPEUTICS, 2024, 7 (02)
  • [4] Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold
    Persson, Maria
    Lehenkari, Petri P.
    Berglin, Lena
    Turunen, Sanna
    Finnila, Mikko A. J.
    Risteli, Juha
    Skrifvars, Mikael
    Tuukkanen, Juha
    SCIENTIFIC REPORTS, 2018, 8
  • [5] A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization
    Cometa, Stefania
    Bonifacio, Maria Addolorata
    Tranquillo, Elisabetta
    Gloria, Antonio
    Domingos, Marco
    De Giglio, Elvira
    POLYMERS, 2021, 13 (01) : 1 - 17
  • [6] 3D bio scaffold support osteogenic differentiation of mesenchymal stem cells
    Ramzan, Faiza
    Khalid, Shumaila
    Ekram, Sobia
    Salim, Asmat
    Frazier, Trivia
    Begum, Sumreen
    Mohiuddin, Omair A.
    Khan, Irfan
    CELL BIOLOGY INTERNATIONAL, 2024, 48 (05) : 594 - 609
  • [7] Fabrication of 3D printed hydroxyapatite/polymeric bone scaffold
    Jongprateep, Oratai
    Lertapiwong, Nuttapalin
    Chanyapoon, Piraya
    Htet, Thura Lin
    Asavaarunotai, Manasbodin
    Bansiddhi, Ampika
    Panomsuwan, Gasidit
    Inseemeesak, Benjaporn
    Lertworasirikul, Amornrat
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (13): : 1780 - 1793
  • [8] Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications
    Thangavel, Ponrasu
    Ramachandran, Balaji
    Muthuvijayan, Vignesh
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (04) : 750 - 760
  • [9] Fabrication And Characterization of Porous 3D Polymer Bioceramic Scaffold for Tissue Engineering Applications
    Lee, Song See
    Shanmuganantha, Lohashenpahan
    Sulong, Abu Bakar
    Yusof, Mohd Reusmaazran
    Hamid, Muhammad Azmi Abdul
    Muhamud, Rahimi L.
    Hwei, Ng Min
    JURNAL KEJURUTERAAN, 2024, 36 (03): : 847 - 859
  • [10] Tailoring of mesoporous bioactive glass composite scaffold via thermal extrusion based 3D bioprinting and scrutiny on bone tissue engineering characteristics
    Pant S.
    Subramanian S.
    Thomas S.
    Loganathan S.
    Valapa R.B.
    Microporous and Mesoporous Materials, 2022, 341