Radio-frequency spectroscopy and the dimensional crossover in interacting

被引:0
|
作者
Maki, Jeff [1 ,2 ]
Dale, Colin J. [3 ,4 ]
Thywissen, Joseph H. [3 ,4 ]
Zhang, Shizhong [5 ,6 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Univ Toronto, CQIQC, Toronto, ON M5S 1A7, Canada
[5] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[6] Univ Hong Kong, Hong Kong Inst Quantum Sci & Technol, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM HEAT ENGINES; FLUCTUATION THEOREMS; WORK; POWER;
D O I
10.1103/PhysRevA.110.053314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Low-dimensional ultracold gases are created in the laboratory by confining three-dimensional (3D) gases inside highly anisotropic trapping potentials. Such trap geometries not only provide access to simulating 1D and 2D physics, but also can be used to study how the character of excitations cross over to three dimensions at higher energy. In this work we study the signature in radio-frequency (rf) spectroscopy for both the 1D-to-3D and the 2D-to-3D crossovers, in spin-polarized Fermi gases. We solve the two-body scattering T matrix in the presence of strong harmonic confinement and use it to evaluate both the high-frequency rf transfer rate and the two-body bound-state energies. These general expressions are then compared both to the low-dimensional limit and to the 3D limit. We find that in order to understand the dimensional crossover for spin-polarized Fermi gases with p-wave interactions, one needs to take into account an emergent s-wave interaction.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Measurement and modeling of the radio frequency sheath impedance in a large magnetized plasma
    Myra, J. R.
    Lau, C.
    Van Compernolle, B.
    Vincena, S.
    Wright, J. C.
    PHYSICS OF PLASMAS, 2020, 27 (07)
  • [42] Combined electron cyclotron resonance and radio frequency discharges in the TOMAS facility
    Kovtun, Yu.
    Wauters, T.
    Goriaev, A.
    Dittrich, L.
    Lopez-Rodriguez, L. D.
    Crombe, K.
    Moon, S.
    Petersson, P.
    Buermans, J.
    Moeller, S.
    Brezinsek, S.
    PHYSICS OF PLASMAS, 2025, 32 (03)
  • [43] Similarity rules for inductive radio frequency plasmas with thermohydrodynamic coupling effects
    Wang, Huihui
    Yang, Dong
    Zheng, Bocong
    Fu, Yangyang
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (06)
  • [44] Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies
    Nwalike, Ezekiel Darlington
    Ibrahim, Khalifa Aliyu
    Crawley, Fergus
    Qin, Qing
    Luk, Patrick
    Luo, Zhenhua
    ENERGIES, 2023, 16 (15)
  • [46] The jet-cloud interacting radio galaxy PKS B2152-699-I. Structures revealed in new deep radio and X-ray observations
    Worrall, D. M.
    Birkinshaw, M.
    Young, A. J.
    Momtahan, K.
    Fosbury, R. A. E.
    Morganti, R.
    Tadhunter, C. N.
    Kleijn, G. Verdoes
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (02) : 1346 - 1362
  • [48] Radio Frequency as a Non-Destructive Approach to Concrete Structure Health Monitoring
    Dhingra, Nitika
    Saluja, Nitin
    Garg, Roopali
    Kanwar, Varinder
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (05) : 2581 - 2589
  • [49] 3D Plastronics Radio Frequency Energy Harvester on Stereolithography Parts
    Nguyen, Xuan Viet Linh
    Gerges, Tony
    Duchamp, Jean-Marc
    Benech, Philippe
    Verdier, Jacques
    Lombard, Philippe
    Cabrera, Michel
    Allard, Bruno
    2022 WIRELESS POWER WEEK (WPW), 2022, : 156 - 161
  • [50] Implementing Radio Frequency Identification within the Perioperative Process: A Case Study Perspective
    Ryan, Jim
    Doster, Barbara
    Dailey, Sandra
    Lewis, Carmen
    Glass, Rosemary
    AMCIS 2012 PROCEEDINGS, 2012,