Airborne particulate matter (PM) poses significant health risks, necessitating accurate toxicity threshold determination for effective risk assessment. This study introduces a novel machine-learning (ML) approach to predict PM toxicity thresholds and identify the key physico-chemical and exposure characteristics. Five machine learning algorithms - logistic regression, support vector classifier, decision tree, random forest, and extreme gradient boosting - were employed to develop predictive models using a comprehensive dataset from existing studies. We developed models using the initial dataset and a class weight approach to address data imbalance. For the imbalanced data, the Random Forest classifier outperformed others with 87% accuracy, 81% recall, and the fewest false negatives (23). In the class weight approach, the Support Vector Classifier minimized false negatives (21), while the Random Forest model achieved superior overall performance with 86% accuracy, 80% recall, and an F1-score of 82%. Furthermore, eXplainable Artificial Intelligence (XAI) techniques, specifically SHAP (SHapley Additive exPlanations) values, were utilized to quantify feature contributions to predictions, offering insights beyond traditional laboratory approaches. This study represents the first application of machine learning for predicting PM toxicity thresholds, providing a robust tool for health risk assessment. The proposed methodology offers a time- and cost-effective alternative to classical laboratory tests, potentially revolutionizing PM toxicity threshold determination in scientific and epidemiological research. This innovative approach has significant implications for shaping regulatory policies and designing targeted interventions to mitigate health risks associated with airborne PM.
机构:
UPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, IndiaUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
Tandon, Aayushi
Awasthi, Amit
论文数: 0引用数: 0
h-index: 0
机构:
UPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, IndiaUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
Awasthi, Amit
Pattnayak, Kanhu Charan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leeds, Sch Earth & Environm, Leeds, England
Univ Cambridge, Cambridge Judge Business Sch, Cambridge, EnglandUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
Pattnayak, Kanhu Charan
Tandon, Aditya
论文数: 0引用数: 0
h-index: 0
机构:
Sharda Univ, Ctr Distance & Online Educ, Great Noida, IndiaUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
Tandon, Aditya
Choudhury, Tanupriya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Petr & Energy Studies UPES, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, IndiaUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
Choudhury, Tanupriya
Kotecha, Ketan
论文数: 0引用数: 0
h-index: 0
机构:
Symbiosis Int, Symbiosis Inst Technol, Symbiosis Ctr Appl Artificial Intelligence, Pune 411045, Maharashtra, IndiaUPES, Sch Adv Engn, Dept Appl Sci, Dehra Dun, Uttarakhand, India
机构:
North China Institute of Aerospace Engineering,School of Remote Sensing and Information EngineeringNorth China Institute of Aerospace Engineering,School of Remote Sensing and Information Engineering
Lan Zhang
Yunfeng Zhao
论文数: 0引用数: 0
h-index: 0
机构:
North China Institute of Aerospace Engineering,School of Remote Sensing and Information EngineeringNorth China Institute of Aerospace Engineering,School of Remote Sensing and Information Engineering
机构:
Jilin Univ, Hosp 1, Pediat Oncol, Changchun 130021, Peoples R ChinaJilin Univ, Hosp 1, Pediat Oncol, Changchun 130021, Peoples R China
Yu, Xin
Wu, Zhuo
论文数: 0引用数: 0
h-index: 0
机构:
Peoples Liberat Army Gen Hosp, Mircrosurgery Dept, Beijing 100853, Peoples R ChinaJilin Univ, Hosp 1, Pediat Oncol, Changchun 130021, Peoples R China
Wu, Zhuo
Zhang, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Hosp 1, Burn Dept, 1 Xinmin St, Changchun 130021, Jilin, Peoples R ChinaJilin Univ, Hosp 1, Pediat Oncol, Changchun 130021, Peoples R China
机构:
Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
Icahn Sch Med Mt Sinai, Med Scientist Training Program, New York, NY USA
Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY USAIcahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
Forrest, Iain S.
O'Neal, Anya J.
论文数: 0引用数: 0
h-index: 0
机构:Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
O'Neal, Anya J.
Pedra, Joao H. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Microbiol & Immunol, Sch Med, Baltimore, MD USAIcahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
Pedra, Joao H. F.
Do, Ron
论文数: 0引用数: 0
h-index: 0
机构:
Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY USA
Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, Floor 18 Room 80B,1468 Madison Ave, New York, NY 10029 USAIcahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA