Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation

被引:1
作者
Giaccagli M. [1 ]
Zoboli S. [2 ]
Astolfi D. [3 ]
Andrieu V. [3 ]
Casadei G. [4 ]
机构
[1] Université de Lorraine, Cnrs, Cran, Nancy
[2] Université de Toulouse, LAAS-CNRS, Ups, Toulouse
[3] Université Claude Bernard Lyon 1, Cnrs, Villeurbanne
[4] Université de Lyon, Laboratoire Ampere Department Eea of the Ecole Centrale de Lyon, Ecully
来源
IEEE Trans Autom Control | 2024年 / 11卷 / 8041-8048期
关键词
Contraction; deep learning; deep neural network (DNN); incremental stability; multiagent systems; synchronization;
D O I
10.1109/TAC.2024.3407015
中图分类号
学科分类号
摘要
In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation. © 1963-2012 IEEE.
引用
收藏
页码:8041 / 8048
页数:7
相关论文
共 39 条
  • [1] Scardovi L., Sepulchre R., Synchronization in networks of identical linear systems, Proc. 47th IEEE Conf. Decis. Control, pp. 546-551, (2008)
  • [2] Li Z., Duan Z., Chen G., Huang L., Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I: Reg. Papers, 57, 1, pp. 213-224, (2010)
  • [3] Isidori A., Lectures in Feedback Design for Multivariable Systems, (2017)
  • [4] Arcak M., Passivity as a design tool for group coordination, IEEE Trans. Autom. Control, 52, 8, pp. 1380-1390, (2007)
  • [5] Stan G., Sepulchre R., Analysis of interconnected oscillators by dissipativity theory, IEEE Trans. Autom. Control, 52, 2, pp. 256-270, (2007)
  • [6] Li Z., Duan Z., Cooperative Control of Multi-Agent Systems: A Consensus Region Approach, (2017)
  • [7] Casadei G., Astolfi D., Alessandri A., Zaccarian L., Synchronization in networks of identical nonlinear systems via dynamic dead zones, IEEE Contr. Syst. Lett., 3, 3, pp. 667-672, (2019)
  • [8] Chopra N., Spong M., Output synchronization of nonlinear systems with relative degree one, Recent Advances in Learning and Control., pp. 51-64, (2008)
  • [9] Isidori A., Marconi L., Casadei G., Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory, IEEE Trans. Autom. Control, 59, 10, pp. 2680-2691, (2014)
  • [10] Forni F., Sepulchre R., A differential Lyapunov framework for contraction analysis, IEEE Trans.Autom.Control, 59, 3, pp. 614-628, (2014)