DRMNet: more efficient bilateral networks for real-time semantic segmentation of road scenes

被引:1
|
作者
Zhang, Wenming [1 ]
Zhang, Shaotong [1 ]
Li, Yaqian [1 ]
Li, Haibin [1 ]
Song, Tao [2 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Hebei Prov Key Lab Test Measurement Technol & Inst, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Real-time; Lightweight network; Semantic segmentation; Feature fusion; Attention mechanism;
D O I
10.1007/s11554-024-01579-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation is crucial in autonomous driving because of its accurate identification and segmentation of objects and regions. However, there is a conflict between segmentation accuracy and real-time performance on embedded devices. We propose an efficient lightweight semantic segmentation network (DRMNet) to solve these problems. Employing a streamlined bilateral structure, the model encodes semantic and spatial paths, cross-fusing features during encoding, and incorporates unique skip connections to coordinate upsampling within the semantic pathway. We design a new self-calibrated aggregate pyramid pooling module (SAPPM) at the end of the semantic branch to capture more comprehensive multi-scale semantic information and balance its extraction and inference speed. Furthermore, we designed a new feature fusion module, which guides the fusion of detail features and semantic features through attention perception, alleviating the problem of semantic information quickly covering spatial detail information. Experimental results on the CityScapes, CamVid, and NightCity datasets demonstrate the effectiveness of DRMNet. On a 2080Ti GPU, DRMNet achieves 78.6% mIoU at 88.3 FPS on the CityScapes dataset, 78.9% mIoU at 149 FPS on the CamVid dataset, and 53.5% mIoU at 160.4 FPS on the NightCity dataset. These results highlight the model's ability to balance accuracy and real-time performance better, making it suitable for embedded devices in autonomous driving applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] BiAttnNet: Bilateral Attention for Improving Real-Time Semantic Segmentation
    Li, Genling
    Li, Liang
    Zhang, Jiawan
    IEEE Signal Processing Letters, 2022, 29 : 46 - 50
  • [32] EffSegmentNet: Efficient Design for Real-time Semantic Segmentation
    Wang, Cyun-Bo
    Ding, Jian-Jiun
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 2104 - 2111
  • [33] Faster BiSeNet : A Faster Bilateral Segmentation Network for Real-time Semantic Segmentation
    Xu, Qi
    Ma, Yinan
    Wu, Jing
    Long, Chengnian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [34] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Xuegang Hu
    Liyuan Jing
    Uroosa Sehar
    Applied Intelligence, 2022, 52 : 580 - 594
  • [35] Adaptive Attention Mechanism Fusion for Real-Time Semantic Segmentation in Complex Scenes
    Chen, Dan
    Liu, Le
    Wang, Chenhao
    Bai, Xiru
    Wang, Zichen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3334 - 3342
  • [36] Real-time Progressive 3D Semantic Segmentation for Indoor Scenes
    Quang-Hieu Pham
    Binh-Son Hua
    Duc Thanh Nguyen
    Yeung, Sai-Kit
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1089 - 1098
  • [37] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Hu, Xuegang
    Jing, Liyuan
    Sehar, Uroosa
    APPLIED INTELLIGENCE, 2022, 52 (01) : 580 - 594
  • [38] Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation
    Peng, Chengli
    Tian, Tian
    Chen, Chen
    Guo, Xiaojie
    Ma, Jiayi
    NEURAL NETWORKS, 2021, 137 : 188 - 199
  • [39] Real-Time Semantic Segmentation via a Densely Aggregated Bilateral Network
    Yang, Shu
    Zhang, Lu
    Liu, Shuai
    Lu, Huchuan
    Chen, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 381 - 392
  • [40] FBSNet: A Fast Bilateral Symmetrical Network for Real-Time Semantic Segmentation
    Gao, Guangwei
    Xu, Guoan
    Li, Juncheng
    Yu, Yi
    Lu, Huimin
    Yang, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3273 - 3283