DRMNet: more efficient bilateral networks for real-time semantic segmentation of road scenes

被引:1
|
作者
Zhang, Wenming [1 ]
Zhang, Shaotong [1 ]
Li, Yaqian [1 ]
Li, Haibin [1 ]
Song, Tao [2 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Hebei Prov Key Lab Test Measurement Technol & Inst, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Real-time; Lightweight network; Semantic segmentation; Feature fusion; Attention mechanism;
D O I
10.1007/s11554-024-01579-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation is crucial in autonomous driving because of its accurate identification and segmentation of objects and regions. However, there is a conflict between segmentation accuracy and real-time performance on embedded devices. We propose an efficient lightweight semantic segmentation network (DRMNet) to solve these problems. Employing a streamlined bilateral structure, the model encodes semantic and spatial paths, cross-fusing features during encoding, and incorporates unique skip connections to coordinate upsampling within the semantic pathway. We design a new self-calibrated aggregate pyramid pooling module (SAPPM) at the end of the semantic branch to capture more comprehensive multi-scale semantic information and balance its extraction and inference speed. Furthermore, we designed a new feature fusion module, which guides the fusion of detail features and semantic features through attention perception, alleviating the problem of semantic information quickly covering spatial detail information. Experimental results on the CityScapes, CamVid, and NightCity datasets demonstrate the effectiveness of DRMNet. On a 2080Ti GPU, DRMNet achieves 78.6% mIoU at 88.3 FPS on the CityScapes dataset, 78.9% mIoU at 149 FPS on the CamVid dataset, and 53.5% mIoU at 160.4 FPS on the NightCity dataset. These results highlight the model's ability to balance accuracy and real-time performance better, making it suitable for embedded devices in autonomous driving applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Xuegang Hu
    Liyuan Jing
    Uroosa Sehar
    Applied Intelligence, 2022, 52 : 580 - 594
  • [22] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Hu, Xuegang
    Jing, Liyuan
    Sehar, Uroosa
    APPLIED INTELLIGENCE, 2022, 52 (01) : 580 - 594
  • [23] FBSNet: A Fast Bilateral Symmetrical Network for Real-Time Semantic Segmentation
    Gao, Guangwei
    Xu, Guoan
    Li, Juncheng
    Yu, Yi
    Lu, Huimin
    Yang, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3273 - 3283
  • [24] Real-Time Semantic Segmentation via a Densely Aggregated Bilateral Network
    Yang, Shu
    Zhang, Lu
    Liu, Shuai
    Lu, Huchuan
    Chen, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 381 - 392
  • [25] ESNET: EDGE-BASED SEGMENTATION NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION IN TRAFFIC SCENES
    Lyu, Haoran
    Fu, Huiyuan
    Hu, Xiaojun
    Liu, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1855 - 1859
  • [26] Real-time segmentation algorithm of unstructured road scenes based on improved BiSeNet
    Bai, Chunhui
    Zhang, Lilian
    Gao, Lutao
    Peng, Lin
    Li, Peishan
    Yang, Linnan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [27] PBSNet: pseudo bilateral segmentation network for real-time semantic segmentation
    Luo, Hui-Lan
    Liu, Chun-Yan
    Mahmoodi, Soroosh
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [28] Efficient use of recent progresses for Real-time Semantic segmentation
    El Houfi, Safae
    Majda, Aicha
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [29] Efficient use of recent progresses for Real-time Semantic segmentation
    Safae El Houfi
    Aicha Majda
    Machine Vision and Applications, 2020, 31
  • [30] DESENet: a bilateral network with detail-enhanced semantic encoder for real-time semantic segmentation
    Tang, Qingsong
    Min, Shitong
    Shi, Xiaomeng
    Zhang, Qi
    Liu, Yang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)