Semi-supervised learning network for deep-sea nodule mineral image segmentation

被引:0
|
作者
Ding, Zhongjun [1 ,2 ,3 ]
Liu, Chen [1 ,2 ]
Wang, Xingyu [2 ,3 ]
Ma, Guangyang [2 ,3 ]
Cao, Chanjuan [2 ,3 ]
Li, Dewei [2 ,3 ]
机构
[1] Harbin Engn Univ, Coll Shipbuilding Engn, Harbin 150006, Peoples R China
[2] Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
[3] Shandong Univ Sci & Technol, Qingdao 266590, Peoples R China
关键词
Deep-sea nodule mineral; Semi-supervised learning; Image segmentation; Global and local feature extraction;
D O I
10.1016/j.apor.2024.104356
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The accurate segmentation of deep-sea nodule mineral images is crucial for scientific mining. However, due to the low contrast of deep-sea images and the varying sizes of nodule minerals, existing methods are not effective in segmenting these images. Furthermore, fully supervised deep learning methods require numerous labelled images for training, and labelling deep-sea nodule mineral images is highly difficult, resulting in a scarcity of available labeled images, which limits the model generalization ability. To address these challenges, a semi- supervised learning network for deep-sea nodule image segmentation (NmiNet) was proposed. In this method, a semi-supervised training paradigm based on underwater image enhancement perturbation and uncertainty weighted optimization (UEUO) was designed. This paradigm enabled the model to fully mine the features in many unlabeled nodule mineral images under the condition of few labelled nodule mineral images, improving the model generalization ability. Moreover, a lightweight global and local feature extraction (GLFE) module was designed to enhance the attention of the module to small nodules, and its ability to locate nodules of different scales by fusing local and global features without considerably increasing model complexity. Experimental results on deep-sea nodule mineral images reveal that this method outperforms existing approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A multi-modal dental dataset for semi-supervised deep learning image segmentation
    Wang, Yaqi
    Ye, Fan
    Chen, Yifei
    Wang, Chengkai
    Wu, Chengyu
    Xu, Feng
    Ma, Zhean
    Liu, Yi
    Zhang, Yifan
    Cao, Mingguo
    Chen, Xiaodiao
    SCIENTIFIC DATA, 2025, 12 (01)
  • [22] Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
    Li, Linhui
    Zhang, Wenjun
    Zhang, Xiaoyan
    Emam, Mahmoud
    Jing, Weipeng
    ELECTRONICS, 2023, 12 (02)
  • [23] A Deep Neural Network Based on ELM for Semi-supervised Learning of Image Classification
    Peiju Chang
    Jiangshe Zhang
    Junying Hu
    Zengjie Song
    Neural Processing Letters, 2018, 48 : 375 - 388
  • [24] A Deep Neural Network Based on ELM for Semi-supervised Learning of Image Classification
    Chang, Peiju
    Zhang, Jiangshe
    Hu, Junying
    Song, Zengjie
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 375 - 388
  • [25] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [26] Semi-Supervised Image Registration using Deep Learning
    Sedghi, Alireza
    Luo, Jie
    Mehrtash, Alireza
    Pieper, Steve
    Tempany, Clare M.
    Kapur, Tina
    Mousavi, Parvin
    Wells, William M., III
    MEDICAL IMAGING 2019: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2019, 10951
  • [27] Semi-supervised interactive fusion network for MR image segmentation
    Xu, Wenxuan
    Bian, Yun
    Lu, Yuxuan
    Meng, Qingquan
    Zhu, Weifang
    Shi, Fei
    Chen, Xinjian
    Shao, Chengwei
    Xiang, Dehui
    MEDICAL PHYSICS, 2023, 50 (03) : 1586 - 1600
  • [28] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [29] Bilateral Supervision Network for Semi-Supervised Medical Image Segmentation
    He, Along
    Li, Tao
    Yan, Juncheng
    Wang, Kai
    Fu, Huazhu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1715 - 1726
  • [30] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):