Incorporating spatial information in deep learning parameter estimation with application to the intravoxel incoherent motion model in diffusion-weighted MRI

被引:1
作者
Kaandorp, Misha P. T. [1 ,2 ,3 ,4 ,5 ]
Zijlstra, Frank [1 ,2 ]
Karimi, Davood [3 ]
Gholipour, Ali [3 ]
While, Peter T. [1 ,2 ]
机构
[1] St Olavs Univ Hosp, Dept Radiol & Nucl Med, Trondheim, Norway
[2] NTNU Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[3] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, Boston, MA USA
[4] Univ Childrens Hosp Zurich, Ctr MR Res, Lenggstr 30, CH-8008 Zurich, Switzerland
[5] Univ Zurich, Zurich, Switzerland
关键词
Quantitative magnetic resonance imaging; Deep learning parameter estimation; Supervised attention models; Synthetic data generation; PERFUSION; IVIM; QUANTIFICATION;
D O I
10.1016/j.media.2024.103414
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge lies in accurately estimating model parameters from the acquired data due to the inherently low signal-to-noise ratio (SNR) of the signal measurements and the complexity of solving the ill-posed inverse problem. Conventional model fitting approaches treat individual voxels as independent. However, the tissue microenvironment is typically homogeneous in a local environment, where neighboring voxels may contain correlated information. To harness the potential benefits of exploiting correlations among signals in adjacent voxels, this study introduces a novel approach to deep learning parameter estimation that effectively incorporates relevant spatial information. This is achieved by training neural networks on patches of synthetic data encompassing plausible combinations of direct correlations between neighboring voxels. We evaluated the approach on the intravoxel incoherent motion (IVIM) model in DWI. We explored the potential of several deep learning architectures to incorporate spatial information using self-supervised and supervised learning. We assessed performance quantitatively using novel fractal-noise-based synthetic data, which provide ground truths possessing spatial correlations. Additionally, we present results of the approach applied to in vivo DWI data consisting of twelve repetitions from a healthy volunteer. We demonstrate that supervised training on larger patch sizes using attention models leads to substantial performance improvements over both conventional voxelwise model fitting and convolution-based approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Signal drift in diffusion MRI of the brain: effects on intravoxel incoherent motion parameter estimates
    Jalnefjord, Oscar
    Rosenqvist, Louise
    Warsame, Amina
    Bjorkman-Burtscher, Isabella M.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (06): : 1005 - 1019
  • [42] Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma
    Peng, Juan
    Zheng, Jing
    Yang, Cui
    Wang, Ran
    Zhou, Yi
    Tao, Yun-Yun
    Gong, Xue-Qin
    Wang, Wei-Cheng
    Zhang, Xiao-Ming
    Yang, Lin
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Intravoxel incoherent motion diffusion-weighted imaging in assessing bladder cancer invasiveness and cell proliferation
    Wang, Fang
    Wu, Lian-Ming
    Hua, Xiao-Lan
    Zhao, Zi-Zhou
    Chen, Xiao-Xi
    Xu, Jian-Rong
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (04) : 1054 - 1060
  • [44] Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging
    Mao, Wei
    Zhou, Jianjun
    Zeng, Mengsu
    Ding, Yuqin
    Qu, Lijie
    Chen, Caizhong
    Ding, Xiaoqiang
    Wang, Yaqiong
    Fu, Caixia
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1251 - 1259
  • [45] Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results
    Bisdas, Sotirios
    Koh, Tong San
    Roder, Constantin
    Braun, Christian
    Schittenhelm, Jens
    Ernemann, Ulrike
    Klose, Uwe
    NEURORADIOLOGY, 2013, 55 (10) : 1189 - 1196
  • [46] Contralateral renal change in a unilateral ureteral obstruction rat model using intravoxel incoherent motion diffusion-weighted imaging
    Zhang, Lingtao
    Mo, Xukai
    Jiang, Zijie
    Mai, Wenfeng
    Su, Haiwei
    Zhang, Zhihua
    Ye, Kunlin
    Fu, Dandan
    Zhao, Shuangquan
    Shi, Changzheng
    RENAL FAILURE, 2024, 46 (02)
  • [47] Intravoxel incoherent motion diffusion-weighted imaging for discrimination of benign and malignant retropharyngeal nodes
    So, Tiffany Y.
    Ai, Qi-Yong H.
    Lam, W. K. Jacky
    Qamar, Sahrish
    Poon, Darren M. C.
    Hui, Edwin P.
    Mo, Frankie K. F.
    Chan, K. C. Allen
    King, Ann D.
    NEURORADIOLOGY, 2020, 62 (12) : 1667 - 1676
  • [48] Intravoxel incoherent motion diffusion-weighted imaging for monitoring chemotherapeutic efficacy in gastric cancer
    Song, Xiao-Li
    Kang, Heoung Keun
    Jeong, Gwang Woo
    Ahn, Kyu Youn
    Jeong, Yong Yeon
    Kang, Yang Joon
    Cho, Hye Jung
    Moon, Chung Man
    WORLD JOURNAL OF GASTROENTEROLOGY, 2016, 22 (24) : 5520 - 5531
  • [49] Editorial for "An Unsupervised Deep Learning Approach for Dynamic-Exponential Intravoxel Incoherent Motion MRI Modeling and Parameter Estimation in the Liver"
    Adams, Lisa C.
    Bressem, Keno K.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (03) : 860 - 861
  • [50] Intravoxel Incoherent Motion Diffusion-weighted MR Imaging for Characterization of Focal Pancreatic Lesions
    Kang, Koung Mi
    Lee, Jeong Min
    Yoon, Jeong Hee
    Kiefer, Berthold
    Han, Joon Koo
    Choi, Byung Ihn
    RADIOLOGY, 2014, 270 (02) : 444 - 453