Secure Offloading With Adversarial Multi-Agent Reinforcement Learning Against Intelligent Eavesdroppers in UAV-Enabled Mobile Edge Computing

被引:1
|
作者
Li, Xulong [1 ]
Wei, Huangfu [1 ]
Xu, Xinyi [1 ]
Huo, Jiahao [1 ]
Long, Keping [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Engn & Technol Res Ctr Convergence Network, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Eavesdropping; Trajectory; Reinforcement learning; Resource management; Wireless communication; Internet of Things; Mobile edge computing (MEC); multi-agent reinforcement learning (MARL); resource allocation; unmanned aerial vehicle (UAV); COMMUNICATION;
D O I
10.1109/TMC.2024.3439016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) has attracted widespread attention due to its ability to effectively alleviate the cloud computing load and significantly reduce latency. However, the potential eavesdroppers challenge the security of the MEC systems and the rapid development of artificial intelligence (AI) has made this security situation more severe. In most existing studies, the eavesdroppers are non-intelligent and it is assumed that they are fixed or move in a simple manner. Obviously, there is a gap from such an assumption to the real conditions that the eavesdropping unmanned aerial vehicles (UAVs) may adjust their flight paths intelligently. To better reflect real-world scenarios, we consider a multi-UAV-assisted MEC system in the presence of intelligent eavesdroppers and propose an adversarial multi-agent reinforcement learning (MARL)-based scheme for secure computational offloading and resource allocation. With this scheme, we aim to solve the zero-sum game between the legitimate UAVs and the eavesdropping UAVs, in which the two types of UAVs take turns acting as the agents of MARL to alternately optimize their respective opposing objectives. The simulation experimental results indicate that the proposed scheme significantly outperforms the existing baseline methods in dealing with the intelligent eavesdropping UAVs, and ensures high energy efficiency of Internet of Things (IoT) devices even in the worst-case scenario when dealing with potential eavesdropping threats.
引用
收藏
页码:13914 / 13928
页数:15
相关论文
共 50 条
  • [41] Multi-Agent Model-Based Reinforcement Learning for Trajectory Design and Power Control in UAV-Enabled Networks
    Zhou, Shiyang
    Cheng, Yufan
    Lei, Xia
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 33 - 38
  • [42] Computation Offloading in UAV-Enabled Edge Computing: A Stackelberg Game Approach
    Yuan, Xinwang
    Xie, Zhidong
    Tan, Xin
    SENSORS, 2022, 22 (10)
  • [43] An intelligent task offloading method based on multi-agent deep reinforcement learning in ultra-dense heterogeneous network with mobile edge computing
    Pang, Shanchen
    Wang, Teng
    Gui, Haiyuan
    He, Xiao
    Hou, Lili
    COMPUTER NETWORKS, 2024, 250
  • [44] Multi-Agent DRL for Task Offloading and Resource Allocation in Multi-UAV Enabled IoT Edge Network
    Seid, Abegaz Mohammed
    Boateng, Gordon Owusu
    Mareri, Bruce
    Sun, Guolin
    Jiang, Wei
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (04): : 4531 - 4547
  • [45] Distributed Multi-Cloud Multi-Access Edge Computing by Multi-Agent Reinforcement Learning
    Zhang, Yutong
    Di, Boya
    Zheng, Zijie
    Lin, Jinlong
    Song, Lingyang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2565 - 2578
  • [46] Cost-efficient computation offloading in UAV-enabled edge computing
    Chen, Ying
    Chen, Shuang
    Wu, Bilian
    Chen, Xin
    IET COMMUNICATIONS, 2020, 14 (15) : 2462 - 2471
  • [47] Sustainable Task Offloading in UAV Networks via Multi-Agent Reinforcement Learning
    Sacco, Alessio
    Esposito, Flavio
    Marchetto, Guido
    Montuschi, Paolo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (05) : 5003 - 5015
  • [48] Deep reinforcement learning enabled UAV-IRS-assisted secure mobile edge computing network
    Zhang, Yingzheng
    Li, Jufang
    Mu, Guangchen
    Chen, Xiaoyu
    PHYSICAL COMMUNICATION, 2023, 61
  • [49] Novel multi-agent reinforcement learning for maximizing throughput in UAV-Enabled 5G networks
    Li, Kuan
    WIRELESS NETWORKS, 2024, 30 (08) : 7029 - 7040
  • [50] Dynamic Computation Offloading and Server Deployment for UAV-Enabled Multi-Access Edge Computing
    Ning, Zhaolong
    Yang, Yuxuan
    Wang, Xiaojie
    Guo, Lei
    Gao, Xinbo
    Guo, Song
    Wang, Guoyin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (05) : 2628 - 2644