Secure Offloading With Adversarial Multi-Agent Reinforcement Learning Against Intelligent Eavesdroppers in UAV-Enabled Mobile Edge Computing

被引:1
|
作者
Li, Xulong [1 ]
Wei, Huangfu [1 ]
Xu, Xinyi [1 ]
Huo, Jiahao [1 ]
Long, Keping [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Engn & Technol Res Ctr Convergence Network, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Eavesdropping; Trajectory; Reinforcement learning; Resource management; Wireless communication; Internet of Things; Mobile edge computing (MEC); multi-agent reinforcement learning (MARL); resource allocation; unmanned aerial vehicle (UAV); COMMUNICATION;
D O I
10.1109/TMC.2024.3439016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) has attracted widespread attention due to its ability to effectively alleviate the cloud computing load and significantly reduce latency. However, the potential eavesdroppers challenge the security of the MEC systems and the rapid development of artificial intelligence (AI) has made this security situation more severe. In most existing studies, the eavesdroppers are non-intelligent and it is assumed that they are fixed or move in a simple manner. Obviously, there is a gap from such an assumption to the real conditions that the eavesdropping unmanned aerial vehicles (UAVs) may adjust their flight paths intelligently. To better reflect real-world scenarios, we consider a multi-UAV-assisted MEC system in the presence of intelligent eavesdroppers and propose an adversarial multi-agent reinforcement learning (MARL)-based scheme for secure computational offloading and resource allocation. With this scheme, we aim to solve the zero-sum game between the legitimate UAVs and the eavesdropping UAVs, in which the two types of UAVs take turns acting as the agents of MARL to alternately optimize their respective opposing objectives. The simulation experimental results indicate that the proposed scheme significantly outperforms the existing baseline methods in dealing with the intelligent eavesdropping UAVs, and ensures high energy efficiency of Internet of Things (IoT) devices even in the worst-case scenario when dealing with potential eavesdropping threats.
引用
收藏
页码:13914 / 13928
页数:15
相关论文
共 50 条
  • [1] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [2] Hybrid UAV-Enabled Secure Offloading via Deep Reinforcement Learning
    Yoo, Seonghoon
    Jeong, Seongah
    Kang, Joonhyuk
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (06) : 972 - 976
  • [3] Survey on computation offloading in UAV-Enabled mobile edge computing
    Huda, S. M. Asiful
    Moh, Sangman
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 201
  • [4] Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing
    Xia, Jingming
    Wang, Peng
    Li, Bin
    Fei, Zesong
    CHINA COMMUNICATIONS, 2022, 19 (04) : 244 - 256
  • [5] Decentralized Navigation With Heterogeneous Federated Reinforcement Learning for UAV-Enabled Mobile Edge Computing
    Wang, Pengfei
    Yang, Hao
    Han, Guangjie
    Yu, Ruiyun
    Yang, Leyou
    Sun, Geng
    Qi, Heng
    Wei, Xiaopeng
    Zhang, Qiang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13621 - 13638
  • [6] Joint Task Offloading and Resource Allocation in UAV-Enabled Mobile Edge Computing
    Yu, Zhe
    Gong, Yanmin
    Gong, Shimin
    Guo, Yuanxiong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (04) : 3147 - 3159
  • [7] Service Provisioning for UAV-Enabled Mobile Edge Computing
    Qu, Yuben
    Dai, Haipeng
    Wang, Haichao
    Dong, Chao
    Wu, Fan
    Guo, Song
    Wu, Qihui
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (11) : 3287 - 3305
  • [8] Online computation offloading and trajectory scheduling for UAV-enabled wireless powered mobile edge computing
    Hu, Han
    Zhou, Xiang
    Wang, Qun
    Hu, Rose Qingyang
    CHINA COMMUNICATIONS, 2022, 19 (04) : 257 - 273
  • [9] Constrained Multi-Objective Optimization for UAV-Enabled Mobile Edge Computing: Offloading Optimization and Path Planning
    Peng, Chaoda
    Huang, Xumin
    Wu, Yuan
    Kang, Jiawen
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (04) : 861 - 865
  • [10] A Systematic Mapping Study of UAV-Enabled Mobile Edge Computing for Task Offloading
    Baktayan, Asrar Ahmed
    Thabit Zahary, Ammar
    Ahmed Al-Baltah, Ibrahim
    IEEE ACCESS, 2024, 12 : 101936 - 101970