Selective oxidative leaching and restoration of FePO4 from spent LiFePO4 powder for regeneration into LiFePO4 cathode

被引:1
作者
Wu, Jiahui [1 ,2 ]
Gong, Yifan [3 ]
Du, Ke [1 ,2 ]
Hu, Guorong [1 ,2 ]
Bai, Ke [1 ,4 ]
Peng, Zhongdong [1 ,2 ]
Chen, Xin [1 ,2 ]
Liu, Fangyang [1 ,2 ]
Cao, Yanbing [1 ,2 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
[3] Zhuzhou Cemented Carbide Grp Co Ltd, Zhuzhou 412000, Peoples R China
[4] Jiangxi Anchi New Energy Technol Co Ltd, Shangrao 334113, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent LiFePO 4 powder; Selective oxidative leaching; Short process repair; FePO; 4; purification; LiFePO; regeneration; LITHIUM-ION BATTERIES; RECOVERY; MANGANESE; NICKEL; SYSTEM; COBALT; ACID;
D O I
10.1016/j.seppur.2024.130674
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the large-scale commercial use of LiFePO4(LFP), the resource regeneration of retired LFP is one of the crucial issues in the EV industry. More attention is being paid to efficient recovery of Fe and P resources and the high quality of FePO4 precursor through process flows for developing recycling methods. The selective extraction process of lithium from spent LFP powder in H3PO4 system was studied, and the distribution and migration behavior of each element during the leaching process were analyzed. Under the optimized leaching conditions, the leaching rates of each element in spent LFP powder are Li: 96.1 %, Fe: 0.28 % and Al: 23.3 %, respectively, showing high efficiency of Li extraction. At the same time, the leaching kinetics of the oxidation leaching process was studied, and the apparent activation energy was calculated to be 53.45 kJ mol-1, indicating that the oxidation leaching process is controlled by chemical reaction. The FePO4 precursor was directly reconstructed from iron-phosphorus slag using a short H3PO4 purification process. The capacity retention of the regenerated LFP using the H3PO4-purified FePO4 precursor is 99.6 % after 300 cycles at 1C, and its specific capacity for reversible discharge at a high rate of 5C is 140.2 mAh g- 1 , demonstrating excellent electrochemical performance. The selective leaching in H3PO4 system shows that the regeneration route of FePO4 precursors is promising for scalable fabrication.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Direct measurements of the non-D(D)over-bar cross section σψ(3770)→non-D(D)over-bar at Ecm=3.773 GeV and the branching fraction for ψ(3770)→non-D(D)over-bar [J].
Ablikim, M. ;
Bai, J. Z. ;
Ban, Y. ;
Cai, X. ;
Chen, H. F. ;
Chen, H. S. ;
Chen, H. X. ;
Chen, J. C. ;
Chen, Jin ;
Chen, Y. B. ;
Chu, Y. P. ;
Dai, Y. S. ;
Diao, L. Y. ;
Deng, Z. Y. ;
Dong, Q. F. ;
Du, S. X. ;
Fang, J. ;
Fang, S. S. ;
Fu, C. D. ;
Gao, C. S. ;
Gao, Y. N. ;
Gu, S. D. ;
Gu, Y. T. ;
Guo, Y. N. ;
He, K. L. ;
He, M. ;
Heng, Y. K. ;
Hou, J. ;
Hu, H. M. ;
Hu, J. H. ;
Hu, T. ;
Huang, G. S. ;
Huang, X. T. ;
Ji, X. B. ;
Jiang, X. S. ;
Jiang, X. Y. ;
Jiao, J. B. ;
Jin, D. P. ;
Jin, S. ;
Lai, Y. F. ;
Li, G. ;
Li, H. B. ;
Li, J. ;
Li, R. Y. ;
Li, S. M. ;
Li, W. D. ;
Li, W. G. ;
Li, X. L. ;
Li, X. N. ;
Li, X. Q. .
PHYSICAL REVIEW D, 2007, 76 (12)
[2]   Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview [J].
Assefi, Mohammad ;
Maroufi, Samane ;
Yamauchi, Yusuke ;
Sahajwalla, Veena .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2020, 24 :26-31
[3]   A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers [J].
Bian, Doucheng ;
Sun, Yonghui ;
Li, Sheng ;
Tian, Yuan ;
Yang, Zeheng ;
Fan, Xiaoming ;
Zhang, Weixin .
ELECTROCHIMICA ACTA, 2016, 190 :134-140
[4]   A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries [J].
Chagnes, Alexandre ;
Pospiech, Beata .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (07) :1191-1199
[5]   Recycling of spent lithium iron phosphate batteries: Research progress based on environmental protection and sustainable development technology [J].
Cui, Ke ;
Zhao, Ming-Chun ;
Li, Yiran ;
Atrens, Andrej ;
Zhang, Fuqin .
SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
[6]   Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process [J].
Dai, Yang ;
Xu, Zhaodong ;
Hua, Dong ;
Gu, Hannian ;
Wang, Ning .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 396
[7]   A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries [J].
Gong, Rui ;
Li, Chenchen ;
Meng, Qi ;
Dong, Peng ;
Zhang, Yingjie ;
Zhang, Bao ;
Yan, Jin ;
Li, Yong .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 319
[8]   Recycle of spent LiFePO4 batteries: An eco-friendly closed-loop technique based on less solvent solid state reaction [J].
Guo, Zhiliang ;
Ji, Shuai ;
Lai, Changgan ;
Zhang, Donghuai ;
Nie, Liu ;
Hou, Yujie ;
Zhang, Yuli ;
Zhang, Yifan ;
Bai, Ling .
SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
[9]   Thermodynamics analysis of LiFePO4 pecipitation from Li-Fe(II)-P-H2O system at 298 K [J].
He Li-hua ;
Zhao Zhong-wei ;
Liu Xu-heng ;
Chen Ai-liang ;
Si Xiu-fen .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 (07) :1766-1770
[10]   Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using L-Tartaric Acid as a Leachant [J].
He, Li-Po ;
Sun, Shu-Ying ;
Mu, Yan-Yu ;
Song, Xing-Fu ;
Yu, Jian-Guo .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (01) :714-721