GaitDAN: Cross-View Gait Recognition via Adversarial Domain Adaptation

被引:1
|
作者
Huang, Tianhuan [1 ]
Ben, Xianye [1 ]
Gong, Chen [2 ]
Xu, Wenzheng [1 ]
Wu, Qiang [3 ]
Zhou, Hongchao [1 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
[2] Nanjing Univ Sci & Technol, Minist Educ, Sch Comp Sci & Engn, Key Lab Intelligent Percept & Syst High Dimens In, Nanjing 210094, Peoples R China
[3] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
关键词
Gait recognition; hierarchical feature aggregation; adversarial view-change elimination; adversarial domain adaptation;
D O I
10.1109/TCSVT.2024.3384308
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
View change causes significant differences in the gait appearance. Consequently, recognizing gait in cross-view scenarios is highly challenging. Most recent approaches either convert the gait from the original view to the target view before recognition is carried out or extract the gait feature irrelevant to the camera view through either brute force learning or decouple learning. However, these approaches have many constraints, such as the difficulty of handling unknown camera views. This work treats the view-change issue as a domain-change issue and proposes to tackle this problem through adversarial domain adaptation. This way, gait information from different views is regarded as the data from different sub-domains. The proposed approach focuses on adapting the gait feature differences caused by such sub-domain change and, at the same time, maintaining sufficient discriminability across the different people. For this purpose, a Hierarchical Feature Aggregation (HFA) strategy is proposed for discriminative feature extraction. By incorporating HFA, the feature extractor can well aggregate the spatial-temporal feature across the various stages of the network and thereby comprehensive gait features can be obtained. Then, an Adversarial View-change Elimination (AVE) module equipped with a set of explicit models for recognizing the different gait viewpoints is proposed. Through the adversarial learning process, AVE would not be able to identify the gait viewpoint in the end, given the gait features generated by the feature extractor. That is, the adversarial domain adaptation mitigates the view change factor, and discriminative gait features that are compatible with all sub-domains are effectively extracted. Extensive experiments on three of the most popular public datasets, CASIA-B, OULP, and OUMVLP richly demonstrate the effectiveness of our approach.
引用
收藏
页码:8026 / 8040
页数:15
相关论文
共 50 条
  • [21] A general tensor representation framework for cross-view gait recognition
    Ben, Xianye
    Zhang, Peng
    Lai, Zhihui
    Yan, Rui
    Zhai, Xinliang
    Meng, Weixiao
    PATTERN RECOGNITION, 2019, 90 : 87 - 98
  • [22] Coupled Bilinear Discriminant Projection for Cross-View Gait Recognition
    Ben, Xianye
    Gong, Chen
    Zhang, Peng
    Yan, Rui
    Wu, Qiang
    Meng, Weixiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 734 - 747
  • [23] Cross-View Gait Recognition Based on U-Net
    Tifiini Alvarez, Israel Raul
    Sahonero-Alvarez, Guillermo
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [24] GaitSet: Cross-View Gait Recognition Through Utilizing Gait As a Deep Set
    Chao, Hanqing
    Wang, Kun
    He, Yiwei
    Zhang, Junping
    Feng, Jianfeng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3467 - 3478
  • [25] Attention-Based Network for Cross-View Gait Recognition
    Huang, Yuanyuan
    Zhang, Jianfu
    Zhao, Haohua
    Zhang, Liqing
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 489 - 498
  • [26] Cross-view gait recognition based on human walking trajectory
    Chen, Xian
    Yang, Tianqi
    Xu, Jiaming
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (08) : 1842 - 1855
  • [27] Cross-View Action Recognition via View Knowledge Transfer
    Liu, Jingen
    Shah, Mubarak
    Kuipers, Benjamin
    Savarese, Silvio
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [28] A non-linear view transformations model for cross-view gait recognition
    Khan, Muhammad Hassan
    Farid, Muhammad Shahid
    Grzegorzek, Marcin
    NEUROCOMPUTING, 2020, 402 : 100 - 111
  • [29] View Transformation Model Incorporating Quality Measures for Cross-View Gait Recognition
    Muramatsu, Daigo
    Makihara, Yasushi
    Yagi, Yasushi
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1602 - 1615
  • [30] Cross-View Gait Recognition Using View-Dependent Discriminative Analysis
    Mansur, Al
    Makihara, Yasushi
    Muramatsu, Daigo
    Yagi, Yasushi
    2014 IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2014), 2014,