Multiscale modeling of crystalline energetic materials

被引:0
|
作者
Ojeda, O.U. [1 ]
Çaǧin, T. [1 ]
机构
[1] Texas A and M University, College Station, TX, United States
来源
Computers, Materials and Continua | 2010年 / 16卷 / 02期
关键词
Vibrations (mechanical) - Crystalline materials - Density (specific gravity) - Stiffness - Molecular dynamics - Reaction kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
The large discrepancy in length and time scales at which characteristic processes of energetic materials are of relevance pose a major challenge for current simulation techniques. We present a systematic study of crystalline energetic materials of different sensitivity and analyze their properties at different theoretical levels. Information like equilibrium structures, vibrational frequencies, conformational rearrangement and mechanical properties like stiffness and elastic properties can be calculated within the density functional theory (DFT) using different levels of approximations. Dynamical properties are obtained by computations using molecular dynamics at finite temperatures through the use of classical force fields. Effect of defects on structure is studied using classical molecular dynamics methods. Temperature induced reactions at elevated temperatures have been studied using ab initio molecular dynamics method for moderate size crystals of nitroethane. Furthermore, while presenting the state of the art in the study of modeling energetic materials, the current advances in the area as well as the limitations of each methodology are discussed. Copyright © 2010 Tech Science Press.
引用
收藏
页码:127 / 173
相关论文
共 50 条
  • [1] Multiscale Modeling of Crystalline Energetic Materials.
    Ojeda, O. U.
    Cagin, T.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2010, 16 (02): : 127 - 173
  • [2] A Perspective on Modeling the Multiscale Response of Energetic Materials
    Rice, Betsy M.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
  • [3] Multiscale multiphase modeling of detonations in condensed energetic materials
    Saurel, Richard
    Fraysse, Francois
    Furfaro, Damien
    Lapebie, Emmanuel
    COMPUTERS & FLUIDS, 2017, 159 : 95 - 111
  • [4] Multiscale Lattice Boltzmann Modeling of Phonon Transport in Crystalline Semiconductor Materials
    Christensen, Adam
    Graham, Samuel
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2010, 57 (02) : 89 - 109
  • [5] Non-equilibrium multiscale coarse-grained simulation of energetic molecular crystalline materials
    Izvekov, Sergey
    Sellers, Michael
    Barnes, Brian
    Larentzos, James
    Brennan, John
    Rice, Betsy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [6] Multiscale materials modeling
    Schmauder, S.
    Schaefer, I.
    MATERIALS TODAY, 2016, 19 (03) : 130 - 131
  • [7] Multiscale materials modeling
    Ball, Philip
    MRS BULLETIN, 2013, 38 (11) : 880 - 881
  • [8] A multiscale approach for modeling crystalline solids
    Cuitiño, AM
    Stainier, L
    Wang, GF
    Strachan, A
    Çagin, T
    Goddard, WA
    Ortiz, M
    JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2002, 8 (2-3): : 127 - 149
  • [9] Roadmap on multiscale materials modeling
    Van Der Giessen, Erik
    Schultz, Peter A
    Bertin, Nicolas
    Bulatov, Vasily V
    Cai, Wei
    Csányi, Gábor
    Foiles, Stephen M
    Geers, M.G.D.
    González, Carlos
    Hütter, Markus
    Kim, Woo Kyun
    Kochmann, Dennis M
    Llorca, Javier
    Mattsson, Ann E
    Rottler, Jörg
    Shluger, Alexander
    Sills, Ryan B
    Steinbach, Ingo
    Strachan, Alejandro
    Tadmor, Ellad B
    Van Der Giessen, Erik, 1600, IOP Publishing Ltd (28):
  • [10] Multiscale modeling in materials chemistry
    Alexandrova, Anastassia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251