Effect of pressure on the crystal structure of α-glycylglycine to 4.7 GPa; application of Hirshfeld surfaces to analyse contacts on increasing pressure

被引:0
|
作者
Centre for Science at Extreme Conditions, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom [1 ]
不详 [2 ]
机构
来源
Acta Crystallogr. Sect. B Struct. Sci. | 2006年 / 2卷 / 310-320期
关键词
Crystal structure - Hydrogen bonds - Phase transitions - Pressure effects - Proteins - Strain measurement - Temperature distribution;
D O I
暂无
中图分类号
学科分类号
摘要
The crystal structure of α-glycylglycine (α-GLYGLY) has been determined at room temperature at pressures between 1.4 and 4.7 GPa. The structure can be considered to consist of layers. The arrangement of molecules within each layer resembles the antiparallel β-sheet motif observed in proteins, except that in α-GLYGLY the motif is constructed through NHO hydrogen bonds rather than covalent amide links. Compression of α-GLYGLY proceeds via the reduction in void sizes. Voids close in such a way as to decrease the distances of stabilizing interactions such as hydrogen bonds and dipolar contacts. The largest reductions in interaction distances tend to occur for those contacts which are longest at ambient pressure. These longer interactions are formed between the β-sheet-like layers, and the largest component of the strain tensor lies in the same direction. The NO distance in one NHO hydrogen bond measures 2.624 (9) Å at 4.7 GPa. This is very short for this kind of interaction and the crystal begins to break up above 5.4 GPa, presumably as the result of a phase transition. The changes that occur have been analysed using Hirshfeld surfaces. Changes in the appearance of these surfaces enable rapid assessment of the structural changes that occur on compression. © 2006 International Union of Crystallography Printed in Great Britain - all rights reserved.
引用
收藏
相关论文
empty
未找到相关数据