Path Planning of Inspection Robot Based on Improved Ant Colony Algorithm

被引:1
|
作者
Wang, Haixia [1 ]
Wang, Shihao [1 ]
Yu, Tao [1 ]
机构
[1] Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Qingdao 266000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
关键词
path planning; ant colony; triangle pruning method; logistics robot; artificial potential field gravity; MOBILE ROBOT;
D O I
10.3390/app14209511
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional Ant Colony Optimization (ACO) algorithm, applied to logistics robot path planning in a two-dimensional grid environment, encounters several challenges: slow convergence rate, susceptibility to local optima, and an excessive number of turning points in the planned paths. To address these limitations, an improved ant colony algorithm has been developed. First, the heuristic function is enhanced by incorporating artificial potential field (APF) attraction, which introduces the influence of the target point's attraction on the heuristic function. This modification accelerates convergence and improves the optimization performance of the algorithm. Second, an additional pheromone increment, calculated from the difference in pheromone levels between the best and worst paths of the previous generation, is introduced during the pheromone update process. This adjustment adaptively enhances the path length optimality. Lastly, a triangle pruning method is applied to eliminate unnecessary turning points, reducing the number of turns the logistics robot must execute and ensuring a more direct and efficient path. To validate the effectiveness of the improved algorithm, extensive simulation experiments were conducted in two grid-based environments of varying complexity. Several performance indicators were utilized to compare the conventional ACO algorithm, a previously improved version, and the newly proposed algorithm. MATLAB simulation results demonstrated that the improved ant colony algorithm significantly outperforms the other methods in terms of path length, number of iterations, and the reduction of inflection points, confirming its superiority in logistics robot path planning.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Robot path planning in unknown environment based on ant colony algorithm
    Tien, Cu Xuan
    Hong, Young Sik
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 601 - 604
  • [32] Path planning of mobile robot based on adaptive ant colony algorithm
    Zheng, Yan
    Luo, Qiang
    Wang, Haibao
    Wang, Changhong
    Chen, Xin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5329 - 5338
  • [33] Application of improved ant colony algorithm in mobile robot path planning
    Gao, Xiang
    Jin, Wuyin
    Zhang, Xia
    Zhang, Binfei
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [34] Robot Path Planning Based on Improved Ant Colony Optimization
    Huangfu Shuyun
    Tang Shoufeng
    Song Bin
    Tong Minming
    Ji Mingyu
    2018 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2018), 2018, : 25 - 28
  • [35] An improved ant colony optimization algorithm in mobile robot path planning
    Li, Hui
    Yang, Kang
    Luo, Wanbo
    Dong, Bo
    Qin, Wei
    Cong, Shuofeng
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4102 - 4107
  • [36] Study on robot path collision avoidance planning based on the improved ant colony algorithm
    Li, Juntao
    Dong, Tingting
    Li Yuanyuan
    Hao, Yan
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, : 540 - 544
  • [37] Robot path planning based on improved ant colony algorithm with potential field heuristic
    Wang X.-Y.
    Yang L.
    Zhang Y.
    Meng S.
    Kongzhi yu Juece/Control and Decision, 2018, 33 (10): : 1775 - 1781
  • [38] 3D path planning for a robot based on improved ant colony algorithm
    Xingcheng Pu
    Chaowen Xiong
    Lianghao Ji
    Longlong Zhao
    Evolutionary Intelligence, 2024, 17 : 55 - 65
  • [39] 3D path planning for a robot based on improved ant colony algorithm
    Pu, Xingcheng
    Xiong, Chaowen
    Ji, Lianghao
    Zhao, Longlong
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 55 - 65
  • [40] Optimal Path Planning for Robot Based on Ant Colony Algorithm
    Zhao, Hong
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 671 - 675