Path Planning of Inspection Robot Based on Improved Ant Colony Algorithm

被引:1
|
作者
Wang, Haixia [1 ]
Wang, Shihao [1 ]
Yu, Tao [1 ]
机构
[1] Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Qingdao 266000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
关键词
path planning; ant colony; triangle pruning method; logistics robot; artificial potential field gravity; MOBILE ROBOT;
D O I
10.3390/app14209511
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional Ant Colony Optimization (ACO) algorithm, applied to logistics robot path planning in a two-dimensional grid environment, encounters several challenges: slow convergence rate, susceptibility to local optima, and an excessive number of turning points in the planned paths. To address these limitations, an improved ant colony algorithm has been developed. First, the heuristic function is enhanced by incorporating artificial potential field (APF) attraction, which introduces the influence of the target point's attraction on the heuristic function. This modification accelerates convergence and improves the optimization performance of the algorithm. Second, an additional pheromone increment, calculated from the difference in pheromone levels between the best and worst paths of the previous generation, is introduced during the pheromone update process. This adjustment adaptively enhances the path length optimality. Lastly, a triangle pruning method is applied to eliminate unnecessary turning points, reducing the number of turns the logistics robot must execute and ensuring a more direct and efficient path. To validate the effectiveness of the improved algorithm, extensive simulation experiments were conducted in two grid-based environments of varying complexity. Several performance indicators were utilized to compare the conventional ACO algorithm, a previously improved version, and the newly proposed algorithm. MATLAB simulation results demonstrated that the improved ant colony algorithm significantly outperforms the other methods in terms of path length, number of iterations, and the reduction of inflection points, confirming its superiority in logistics robot path planning.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Mobile Robot Path Planning Based on Improved Ant Colony Algorithm
    Su, Qinggang
    Yu, Wangwang
    Liu, Jun
    2021 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE (ACCTCS 2021), 2021, : 220 - 224
  • [2] Robot path planning based on improved ant colony algorithm
    Xue, Yang
    Chen, Yuefan
    Ding, Zilong
    Huang, Xincao
    Xi, Dongxiang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 129 - 133
  • [3] Path Planning of Robot Based on Improved Ant Colony Algorithm
    Zhang, Ying
    Wang, Changtao
    Xia, Xinghua
    Sun, Ying
    2011 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (ICFIE 2011), 2011, 8 : 256 - 261
  • [4] Research on path planning of mobile robot based on improved ant colony algorithm
    Qiang Luo
    Haibao Wang
    Yan Zheng
    Jingchang He
    Neural Computing and Applications, 2020, 32 : 1555 - 1566
  • [5] Research on path planning of mobile robot based on improved ant colony algorithm
    Wang Rui
    Wang Jinguo
    Wang Na
    PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 : 1085 - 1088
  • [6] Robot dynamic path planning based on improved ant colony and DWA algorithm
    Wei L.-X.
    Zhang Y.-K.
    Sun H.
    Hou S.-J.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (09): : 2211 - 2216
  • [7] Research on path planning of mobile robot based on improved ant colony algorithm
    Luo, Qiang
    Wang, Haibao
    Zheng, Yan
    He, Jingchang
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (06): : 1555 - 1566
  • [8] Research on path planning of mobile robot based on improved ant colony algorithm
    Jiang M.
    Wang F.
    Ge Y.
    Sun L.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (02): : 113 - 121
  • [9] An improved ant colony algorithm for robot path planning
    Liu, Jianhua
    Yang, Jianguo
    Liu, Huaping
    Tian, Xingjun
    Gao, Meng
    SOFT COMPUTING, 2017, 21 (19) : 5829 - 5839
  • [10] An improved ant colony algorithm for robot path planning
    Jianhua Liu
    Jianguo Yang
    Huaping Liu
    Xingjun Tian
    Meng Gao
    Soft Computing, 2017, 21 : 5829 - 5839