Milling Machine Fault Diagnosis Using Acoustic Emission and Hybrid Deep Learning with Feature Optimization

被引:3
|
作者
Umar, Muhammad [1 ]
Siddique, Muhammad Farooq [1 ]
Ullah, Niamat [1 ]
Kim, Jong-Myon [1 ,2 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
[2] PD Technol Co Ltd, Ulsan 44610, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
基金
新加坡国家研究基金会;
关键词
acoustic emission signals; fault diagnosis; condition monitoring; hybrid deep learning model; genetic algorithm; milling machine; SIGNAL;
D O I
10.3390/app142210404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a fault diagnosis technique for milling machines based on acoustic emission (AE) signals and a hybrid deep learning model optimized with a genetic algorithm. Mechanical failures in milling machines, particularly in critical components like cutting tools, gears, and bearings, account for a significant portion of operational breakdowns, leading to unplanned downtime and financial losses. To address this issue, the proposed method first acquires AE signals from the milling machine. AE signals, capturing the dynamic responses of machine components, are transformed into continuous wavelet transform (CWT) scalograms for further analysis. Gaussian filtering is applied to enhance the clarity of these scalograms, effectively reducing noise while maintaining essential features. A convolutional neural network (CNN) based on the VGG16 architecture is utilized for spatial feature extraction, followed by a bidirectional long short-term memory (BiLSTM) network to capture the temporal dependencies of the scalograms. The genetic algorithm (GA) is used to optimize feature selection and ensure the selection of the most relevant features to further improve the model's performance. The optimized features are finally fed into a fully connected (FC) layer of the proposed hybrid model for fault classification. The proposed method achieves an accuracy of 99.6%, significantly outperforming traditional approaches. This method offers a highly accurate and efficient solution for fault detection in milling machines, allowing for more reliable predictive maintenance and operational efficiency in industrial settings.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods
    Ciaburro, Giuseppe
    Padmanabhan, Sankar
    Maleh, Yassine
    Puyana-Romero, Virginia
    INFORMATICS-BASEL, 2023, 10 (01):
  • [2] Deep Discriminative Feature Learning and Feature Space Transformation for Scalable Machine Fault Diagnosis
    Sreekumar, K. T.
    Kumar, C. Santhosh
    Ramachandran, K. I.
    IEEE ACCESS, 2024, 12 : 107944 - 107958
  • [3] GEAR PITTING FAULT DIAGNOSIS USING RAW ACOUSTIC EMISSION SIGNAL BASED ON DEEP LEARNING
    Li, Xueyi
    Li, Jialin
    He, David
    Qu, Yongzhi
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2019, 21 (03): : 403 - 410
  • [4] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [5] A hybrid fault diagnosis scheme for milling tools using MWN-CBAM-PatchTST network with acoustic emission signals
    Guo, Junyu
    Luo, Haolan
    Xing, Yongyi
    Hu, Chen
    Yan, Jingchao
    Wu, Runqi
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [6] A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
    Sohaib, Muhammad
    Kim, Cheol-Hong
    Kim, Jong-Myon
    SENSORS, 2017, 17 (12)
  • [7] Fault diagnosis studies of face milling cutter using machine learning approach
    Madhusudana, C. K.
    Budati, S.
    Gangadhar, N.
    Kumar, H.
    Narendranath, S.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2016, 35 (02) : 128 - 138
  • [8] An Intelligent Deep Feature Learning Method With Improved Activation Functions for Machine Fault Diagnosis
    You, Wei
    Shen, Changqing
    Wang, Dong
    Chen, Liang
    Jiang, Xingxing
    Zhu, Zhongkui
    IEEE ACCESS, 2020, 8 : 1975 - 1985
  • [9] Vibration and acoustic signal-based bearing fault diagnosis in CNC machine using an improved deep learning
    Mohmad Iqbal
    A. K. Madan
    Naseem Ahmad
    Iran Journal of Computer Science, 2024, 7 (4) : 723 - 733
  • [10] Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
    Shao, Siyu
    McAleer, Stephen
    Yan, Ruqiang
    Baldi, Pierre
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2446 - 2455