共 50 条
Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts
被引:0
作者:
Seraji, Pardis
[1
]
Shahbazi, Hessam
[1
]
Ncube, Musawenkosi K.
[2
]
Shan, Nannan
[3
]
Lagunas, Francisco
[4
]
Papailias, Ilias
[1
,8
]
Navabi, Pouyan
[5
]
Zhang, Chengji
[1
,3
]
Jaradat, Ahmad
[1
]
Kadkhodaei, Sara
[6
]
Glusac, Ksenija D.
[5
,7
]
Klie, Robert F.
[4
]
Ngo, Anh T.
[2
,3
]
Curtiss, Larry A.
[3
]
Salehi-Khojin, Amin
[1
,8
]
机构:
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[4] Univ Illinois, Dept Phys, Chicago, IL USA
[5] Univ Illinois, Dept Chem, Chicago, IL USA
[6] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL USA
[7] Argonne Natl Lab, Chem Sci & Engn, Lemont, IL USA
[8] Southern Methodist Univ, Dept Mech Engn, Dallas, TX USA
来源:
基金:
美国国家科学基金会;
关键词:
Li-air;
Li-oxygen;
Battery;
Lithium;
Chalcogenide;
LI-O-2;
BATTERY;
CATHODE;
PERFORMANCE;
NANOPARTICLES;
ELECTRODE;
GRAPHENE;
D O I:
10.1016/j.nanoen.2024.110510
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Solid lithium peroxide (Li2O2) is the major discharge product in Li-air batteries. However, the electronically insulating nature of Li2O2 tends to affect the battery's performance such as the polarization gap and cyclability. On the other hand, lithium superoxide (LiO2), generated through a one-electron transfer process, offers greater electronic conductivity, lower charge transfer resistance, and thus reduced charge potential. Nevertheless, LiO2 long-term stabilization as a final product remains a significant challenge. In this study, we present the molybdenum (Mo)-based Janus chalcogenide family featuring asymmetric structures as a new generation of cathode catalysts for Li-air batteries. These catalysts demonstrate remarkable efficacy in stabilizing LiO2 discharge products, even under high current densities of 5000 mA/g (corresponding to 0.5 mA/cm2). Our density functional calculations provide an understanding of why the asymmetric Mo-Janus chalcogenides result in LiO2 formation whereas the symmetric Mo-dichalcogenides produce Li2O2 as the discharge product. These results pave the way to explore a new generation of advanced catalysts for superoxide-based Li-air batteries.
引用
收藏
页数:12
相关论文
共 50 条