Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts

被引:0
作者
Seraji, Pardis [1 ]
Shahbazi, Hessam [1 ]
Ncube, Musawenkosi K. [2 ]
Shan, Nannan [3 ]
Lagunas, Francisco [4 ]
Papailias, Ilias [1 ,8 ]
Navabi, Pouyan [5 ]
Zhang, Chengji [1 ,3 ]
Jaradat, Ahmad [1 ]
Kadkhodaei, Sara [6 ]
Glusac, Ksenija D. [5 ,7 ]
Klie, Robert F. [4 ]
Ngo, Anh T. [2 ,3 ]
Curtiss, Larry A. [3 ]
Salehi-Khojin, Amin [1 ,8 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[4] Univ Illinois, Dept Phys, Chicago, IL USA
[5] Univ Illinois, Dept Chem, Chicago, IL USA
[6] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL USA
[7] Argonne Natl Lab, Chem Sci & Engn, Lemont, IL USA
[8] Southern Methodist Univ, Dept Mech Engn, Dallas, TX USA
基金
美国国家科学基金会;
关键词
Li-air; Li-oxygen; Battery; Lithium; Chalcogenide; LI-O-2; BATTERY; CATHODE; PERFORMANCE; NANOPARTICLES; ELECTRODE; GRAPHENE;
D O I
10.1016/j.nanoen.2024.110510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid lithium peroxide (Li2O2) is the major discharge product in Li-air batteries. However, the electronically insulating nature of Li2O2 tends to affect the battery's performance such as the polarization gap and cyclability. On the other hand, lithium superoxide (LiO2), generated through a one-electron transfer process, offers greater electronic conductivity, lower charge transfer resistance, and thus reduced charge potential. Nevertheless, LiO2 long-term stabilization as a final product remains a significant challenge. In this study, we present the molybdenum (Mo)-based Janus chalcogenide family featuring asymmetric structures as a new generation of cathode catalysts for Li-air batteries. These catalysts demonstrate remarkable efficacy in stabilizing LiO2 discharge products, even under high current densities of 5000 mA/g (corresponding to 0.5 mA/cm2). Our density functional calculations provide an understanding of why the asymmetric Mo-Janus chalcogenides result in LiO2 formation whereas the symmetric Mo-dichalcogenides produce Li2O2 as the discharge product. These results pave the way to explore a new generation of advanced catalysts for superoxide-based Li-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Solid-State Electrolytes for Lithium-Air Batteries
    Qi, Xianhai
    Liu, Dapeng
    Yu, Haohan
    Fu, Zerui
    Zhang, Yu
    BATTERIES & SUPERCAPS, 2024,
  • [42] In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries
    Wang, Junbo
    Fan, Meiling
    Tu, Wenmao
    Chen, Kai
    Shen, Yafei
    Zhang, Haining
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 944 - 953
  • [43] Advances in understanding mechanisms underpinning lithium-air batteries
    Aurbach, Doron
    McCloskey, Bryan D.
    Nazar, Linda F.
    Bruce, Peter G.
    NATURE ENERGY, 2016, 1
  • [44] Instability of Poly(ethylene oxide) upon Oxidation in Lithium-Air Batteries
    Harding, Jonathon R.
    Amanchukwu, Chibueze V.
    Hammond, Paula T.
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (13) : 6947 - 6955
  • [45] A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries
    Ye, Luhan
    Lv, Weiqiang
    Zhang, Kelvin H. L.
    Wang, Xiaoning
    Yan, Pengfei
    Dickerson, James H.
    He, Weidong
    ENERGY, 2015, 83 : 669 - 673
  • [46] Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries
    Hong, Dae-Seon
    Choi, Yeon-Ji
    Jin, Chang-Su
    Shin, Kyoung-Hee
    Song, Woo-Jin
    Yeon, Sun-Hwa
    ENERGIES, 2024, 17 (01)
  • [47] Lanthanum Manganite-based Air Electrode Catalysts and Their Application to Lithium-air Batteries: Effects of Carbon Support Oxidation
    Saito, Morihiro
    Tachikawa, Yusuke
    Fujinami, Taichi
    Mikami, Kento
    Hayashi, Yoshiya
    Shiroishi, Hidenobu
    Streich, Daniel
    Berg, Erik J.
    Novak, Petr
    ELECTROCHEMISTRY, 2018, 86 (05) : 265 - 271
  • [48] Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries
    Wang, Jiajun
    Li, Yongliang
    Sun, Xueliang
    NANO ENERGY, 2013, 2 (04) : 443 - 467
  • [49] Graphene Foam Decorated with Ceria Microspheres as a Flexible Cathode for Foldable Lithium-Air Batteries
    Jiang, Yuexing
    Cheng, Junfang
    Zou, Lu
    Li, Xinyu
    Huang, Yizhen
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    CHEMCATCHEM, 2017, 9 (22) : 4231 - 4237
  • [50] A SnO2-Based Cathode Catalyst for Lithium-Air Batteries
    Mei, Delong
    Yuan, Xianxia
    Ma, Zhong
    Wei, Ping
    Yu, Xuebin
    Yang, Jun
    Ma, Zi-Feng
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) : 12804 - 12811