Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts

被引:0
作者
Seraji, Pardis [1 ]
Shahbazi, Hessam [1 ]
Ncube, Musawenkosi K. [2 ]
Shan, Nannan [3 ]
Lagunas, Francisco [4 ]
Papailias, Ilias [1 ,8 ]
Navabi, Pouyan [5 ]
Zhang, Chengji [1 ,3 ]
Jaradat, Ahmad [1 ]
Kadkhodaei, Sara [6 ]
Glusac, Ksenija D. [5 ,7 ]
Klie, Robert F. [4 ]
Ngo, Anh T. [2 ,3 ]
Curtiss, Larry A. [3 ]
Salehi-Khojin, Amin [1 ,8 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[4] Univ Illinois, Dept Phys, Chicago, IL USA
[5] Univ Illinois, Dept Chem, Chicago, IL USA
[6] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL USA
[7] Argonne Natl Lab, Chem Sci & Engn, Lemont, IL USA
[8] Southern Methodist Univ, Dept Mech Engn, Dallas, TX USA
基金
美国国家科学基金会;
关键词
Li-air; Li-oxygen; Battery; Lithium; Chalcogenide; LI-O-2; BATTERY; CATHODE; PERFORMANCE; NANOPARTICLES; ELECTRODE; GRAPHENE;
D O I
10.1016/j.nanoen.2024.110510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid lithium peroxide (Li2O2) is the major discharge product in Li-air batteries. However, the electronically insulating nature of Li2O2 tends to affect the battery's performance such as the polarization gap and cyclability. On the other hand, lithium superoxide (LiO2), generated through a one-electron transfer process, offers greater electronic conductivity, lower charge transfer resistance, and thus reduced charge potential. Nevertheless, LiO2 long-term stabilization as a final product remains a significant challenge. In this study, we present the molybdenum (Mo)-based Janus chalcogenide family featuring asymmetric structures as a new generation of cathode catalysts for Li-air batteries. These catalysts demonstrate remarkable efficacy in stabilizing LiO2 discharge products, even under high current densities of 5000 mA/g (corresponding to 0.5 mA/cm2). Our density functional calculations provide an understanding of why the asymmetric Mo-Janus chalcogenides result in LiO2 formation whereas the symmetric Mo-dichalcogenides produce Li2O2 as the discharge product. These results pave the way to explore a new generation of advanced catalysts for superoxide-based Li-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Rapid Development and Critical Issues of Secondary Lithium-air Batteries
    Guo Xiang-Xin
    Huang Shi-Ting
    Zhao Ning
    Cui Zhong-Hui
    Fan Wu-Gang
    Li Chi-Lin
    Li Hong
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (02) : 113 - 123
  • [32] Electrochemical behavior of cubic titanium carbide for lithium-air batteries
    Qin Zhen-hai
    Huang Hao
    Wu Ai-min
    Chen Ming-zhu
    Yang Ying-ying
    Yao Man
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2019, 47 (02): : 34 - 41
  • [33] Tuning Surface Chemistry of TiC Electrodes for Lithium-Air Batteries
    Kozmenkova, Anna Ya.
    Kataev, Elmar Yu.
    Belova, Alina I.
    Arnati, Matteo
    Gregoratti, Luca
    Velasco-Velez, Juan
    Knop-Gericke, Axel
    Senkovsky, Boris
    Vyalikh, Denis V.
    Itkis, Daniil M.
    Shao-Horn, Yang
    Yashina, Lada V.
    CHEMISTRY OF MATERIALS, 2016, 28 (22) : 8248 - 8255
  • [34] Solvent-Coupled Catalysis of the Oxygen Electrode Reactions in Lithium-Air Batteries
    Trahan, Matthew J.
    Gunasekara, Iromie
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) : A1706 - A1715
  • [35] Modeling and Simulation of Electrochemical Impedance Spectra in Lithium-Air Batteries
    Mehta, M.
    Andrei, P.
    SYMPOSIUM IN HONOR OF RICHARD BUCK, 2014, 61 (15): : 39 - 55
  • [36] Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries
    Wang Hai-fan
    Wei Wei
    Qin Lei
    Lei Yu
    Yu Wei
    Liu Ru-liang
    Lu Wei
    Zhai Deng-yun
    Yang Quan-hong
    NEW CARBON MATERIALS, 2016, 31 (03) : 307 - 314
  • [37] A reversible long-life lithium-air battery in ambient air
    Zhang, Tao
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2013, 4
  • [38] Lithium-Air Batteries: Performance Interplays with Instability Factors
    Ye, Luhan
    Lv, Weiqiang
    Cui, Junyi
    Liang, Yachun
    Wu, Peng
    Wang, Xiaoning
    He, Han
    Lin, Senjun
    Wang, Wei
    Dickerson, James H.
    He, Weidong
    CHEMELECTROCHEM, 2015, 2 (03): : 312 - 323
  • [39] Selection of oxygen reduction catalysts for rechargeable lithium-air batteries-Metal or oxide?
    Cheng, H.
    Scott, K.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 108 (1-2) : 140 - 151
  • [40] Lithium-Air Batteries: Air-Breathing Challenges and Perspective
    Kang, Jin-Hyuk
    Lee, Jiyoung
    Jung, Ji-Won
    Park, Jiwon
    Jang, Taegyu
    Kim, Hyun-Soo
    Nam, Jong-Seok
    Lim, Haeseong
    Yoon, Ki Ro
    Ryu, Won-Hee
    Kim, Il-Doo
    Byon, Hye Ryung
    ACS NANO, 2020, 14 (11) : 14549 - 14578