Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts

被引:0
作者
Seraji, Pardis [1 ]
Shahbazi, Hessam [1 ]
Ncube, Musawenkosi K. [2 ]
Shan, Nannan [3 ]
Lagunas, Francisco [4 ]
Papailias, Ilias [1 ,8 ]
Navabi, Pouyan [5 ]
Zhang, Chengji [1 ,3 ]
Jaradat, Ahmad [1 ]
Kadkhodaei, Sara [6 ]
Glusac, Ksenija D. [5 ,7 ]
Klie, Robert F. [4 ]
Ngo, Anh T. [2 ,3 ]
Curtiss, Larry A. [3 ]
Salehi-Khojin, Amin [1 ,8 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[4] Univ Illinois, Dept Phys, Chicago, IL USA
[5] Univ Illinois, Dept Chem, Chicago, IL USA
[6] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL USA
[7] Argonne Natl Lab, Chem Sci & Engn, Lemont, IL USA
[8] Southern Methodist Univ, Dept Mech Engn, Dallas, TX USA
基金
美国国家科学基金会;
关键词
Li-air; Li-oxygen; Battery; Lithium; Chalcogenide; LI-O-2; BATTERY; CATHODE; PERFORMANCE; NANOPARTICLES; ELECTRODE; GRAPHENE;
D O I
10.1016/j.nanoen.2024.110510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid lithium peroxide (Li2O2) is the major discharge product in Li-air batteries. However, the electronically insulating nature of Li2O2 tends to affect the battery's performance such as the polarization gap and cyclability. On the other hand, lithium superoxide (LiO2), generated through a one-electron transfer process, offers greater electronic conductivity, lower charge transfer resistance, and thus reduced charge potential. Nevertheless, LiO2 long-term stabilization as a final product remains a significant challenge. In this study, we present the molybdenum (Mo)-based Janus chalcogenide family featuring asymmetric structures as a new generation of cathode catalysts for Li-air batteries. These catalysts demonstrate remarkable efficacy in stabilizing LiO2 discharge products, even under high current densities of 5000 mA/g (corresponding to 0.5 mA/cm2). Our density functional calculations provide an understanding of why the asymmetric Mo-Janus chalcogenides result in LiO2 formation whereas the symmetric Mo-dichalcogenides produce Li2O2 as the discharge product. These results pave the way to explore a new generation of advanced catalysts for superoxide-based Li-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] In situ growth of mesoporous NiO nanoplates on a graphene matrix as cathode catalysts for rechargeable lithium-air batteries
    Qiu, Danfeng
    Bu, Gang
    Zhao, Bin
    Lin, Zixia
    Pu, Lin
    Pan, Lijia
    Shi, Yi
    MATERIALS LETTERS, 2015, 141 : 43 - 46
  • [22] Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes
    Steven J. Visco
    Vitaliy Y. Nimon
    Alexei Petrov
    Kirill Pridatko
    Nikolay Goncharenko
    Eugene Nimon
    Lutgard De Jonghe
    Yury M. Volfkovich
    Daniil A. Bograchev
    Journal of Solid State Electrochemistry, 2014, 18 : 1443 - 1456
  • [23] Influence of cathode process on the performance of lithium-air batteries
    Ma, Zhong
    Yuan, Xianxia
    Sha, Hao-Dong
    Ma, Zi-Feng
    Li, Qian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 11004 - 11010
  • [24] Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries
    Park, Hey Woong
    Lee, Dong Un
    Park, Moon Gyu
    Ahmed, Raihan
    Seo, Min Ho
    Nazar, Linda F.
    Chen, Zhongwei
    CHEMSUSCHEM, 2015, 8 (06) : 1058 - 1065
  • [25] Analysis of Air Cathode Perfomance for Lithium-Air Batteries
    Wang, Yun
    Cho, Sung Chan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1847 - A1855
  • [26] Perspectives and challenges of rechargeable lithium-air batteries
    Imanishi, N.
    Yamamoto, O.
    MATERIALS TODAY ADVANCES, 2019, 4
  • [27] Rechargeable lithium-air batteries: characteristics and prospects
    Imanishi, Nobuyuki
    Yamamoto, Osamu
    MATERIALS TODAY, 2014, 17 (01) : 24 - 30
  • [28] A study of PtxCoy alloy nanoparticles as cathode catalysts for lithium-air batteries with improved catalytic activity
    Su, Dawei
    Kim, Hyun-Soo
    Kim, Woo-Seong
    Wang, Guoxiu
    JOURNAL OF POWER SOURCES, 2013, 244 : 488 - 493
  • [29] From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities
    Geng, Dongsheng
    Ding, Ning
    Hor, T. S. Andy
    Chien, Sheau Wei
    Liu, Zhaolin
    Wuu, Delvin
    Sun, Xueliang
    Zong, Yun
    ADVANCED ENERGY MATERIALS, 2016, 6 (09)
  • [30] Recent Progress in Non-Aqueous Lithium-Air Batteries
    Wu Ai-Ming
    Xia Guo-Feng
    Shen Shui-Yun
    Yin Jie-Wei
    Mao Ya
    Bai Qing-You
    Xie Jing-Ying
    Zhang Jun-Liang
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (08) : 1866 - 1879