Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts

被引:0
作者
Seraji, Pardis [1 ]
Shahbazi, Hessam [1 ]
Ncube, Musawenkosi K. [2 ]
Shan, Nannan [3 ]
Lagunas, Francisco [4 ]
Papailias, Ilias [1 ,8 ]
Navabi, Pouyan [5 ]
Zhang, Chengji [1 ,3 ]
Jaradat, Ahmad [1 ]
Kadkhodaei, Sara [6 ]
Glusac, Ksenija D. [5 ,7 ]
Klie, Robert F. [4 ]
Ngo, Anh T. [2 ,3 ]
Curtiss, Larry A. [3 ]
Salehi-Khojin, Amin [1 ,8 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[4] Univ Illinois, Dept Phys, Chicago, IL USA
[5] Univ Illinois, Dept Chem, Chicago, IL USA
[6] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL USA
[7] Argonne Natl Lab, Chem Sci & Engn, Lemont, IL USA
[8] Southern Methodist Univ, Dept Mech Engn, Dallas, TX USA
基金
美国国家科学基金会;
关键词
Li-air; Li-oxygen; Battery; Lithium; Chalcogenide; LI-O-2; BATTERY; CATHODE; PERFORMANCE; NANOPARTICLES; ELECTRODE; GRAPHENE;
D O I
10.1016/j.nanoen.2024.110510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid lithium peroxide (Li2O2) is the major discharge product in Li-air batteries. However, the electronically insulating nature of Li2O2 tends to affect the battery's performance such as the polarization gap and cyclability. On the other hand, lithium superoxide (LiO2), generated through a one-electron transfer process, offers greater electronic conductivity, lower charge transfer resistance, and thus reduced charge potential. Nevertheless, LiO2 long-term stabilization as a final product remains a significant challenge. In this study, we present the molybdenum (Mo)-based Janus chalcogenide family featuring asymmetric structures as a new generation of cathode catalysts for Li-air batteries. These catalysts demonstrate remarkable efficacy in stabilizing LiO2 discharge products, even under high current densities of 5000 mA/g (corresponding to 0.5 mA/cm2). Our density functional calculations provide an understanding of why the asymmetric Mo-Janus chalcogenides result in LiO2 formation whereas the symmetric Mo-dichalcogenides produce Li2O2 as the discharge product. These results pave the way to explore a new generation of advanced catalysts for superoxide-based Li-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Discovery of organic catalysts boosting lithium carbonate decomposition toward ambient air operational lithium-air batteries
    Ko, Sunghyun
    Yoo, Yiseul
    Choi, Jinkwan
    Lim, Hee-Dae
    Park, Chan Beum
    Lee, Minah
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (38) : 20464 - 20472
  • [2] Cobalt Phthalocyanine Catalyzed Lithium-Air Batteries
    Trahan, Matthew J.
    Jia, Qingying
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1577 - A1586
  • [3] Achilles' Heel of Lithium-Air Batteries: Lithium Carbonate
    Zhao, Zhiwei
    Huang, Jun
    Peng, Zhangquan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) : 3874 - 3886
  • [4] Design and Preparation of Advanced Materials for Lithium-Air Batteries
    Liu Qingchao
    Ma Shiyua
    Xu Jijing
    Li Zhongjun
    Zhang Xinbo
    ACTA CHIMICA SINICA, 2017, 75 (02) : 137 - 146
  • [5] Lithium-Air Batteries
    Kozubik, Libor
    PROCEEDINGS OF THE 12TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2011, 2011, : 469 - 471
  • [6] Cerium Oxides as Oxygen Reduction Catalysts for Lithium-Air Batteries
    Lin, Xiujing
    Zhou, Lan
    Huang, Tao
    Yu, Aishui
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (10): : 9550 - 9559
  • [7] Critical aspects in the development of lithium-air batteries
    Garcia-Araez, Nuria
    Novak, Petr
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (07) : 1793 - 1807
  • [8] Materials challenges in rechargeable lithium-air batteries
    Kwabi, D. G.
    Ortiz-Vitoriano, N.
    Freunberger, S. A.
    Chen, Y.
    Imanishi, N.
    Bruce, P. G.
    Shao-Horn, Y.
    MRS BULLETIN, 2014, 39 (05) : 443 - 452
  • [9] Lithium-air and lithium-sulfur batteries
    Bruce, Peter G.
    Hardwick, Laurence J.
    Abraham, K. M.
    MRS BULLETIN, 2011, 36 (07) : 506 - 512
  • [10] Air Electrode for the Lithium-Air Batteries: Materials and Structure Designs
    Wen, Zhaoyin
    Shen, Chen
    Lu, Yan
    CHEMPLUSCHEM, 2015, 80 (02): : 270 - +