共 50 条
Effect of Ge4+ -substituted on the structure characteristics and microwave/terahertz dielectric properties of ultra-low sr , high Q <middle dot>f cordierite ceramics
被引:10
|作者:
Tian, Huanrong
[1
,2
,3
]
Zhang, Yiyun
[1
]
Wang, Ruihan
[1
]
Wu, Haitao
[1
]
Shan, Lianwei
[2
]
机构:
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Heilongjiang Prov Key Lab CO2 Resource Utilizat &, Harbin 150040, Peoples R China
[3] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China
来源:
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
|
2025年
/
216卷
关键词:
Cordierite;
Dielectric properties;
Bond susceptibility;
Terahertz time domain spectroscopy;
Microstrip patch antennas;
CRYSTAL-STRUCTURE;
SINTERING CHARACTERISTICS;
BOND CHARACTERISTICS;
MICROWAVE;
PHASE;
CONSTANTS;
D O I:
10.1016/j.jmst.2024.08.008
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this study, Ge4 + -substituted cordierite, Mg2 Al4 (Si1-x Gex )5 O18 ceramics, were successfully prepared by the traditional solid-state method to broaden its application potential. Notably, the excellent dielectric properties with sr = 4.90, Q <middle dot>f = 128,200 GHz, and rf = -21.01 ppm degrees C-1 were achieved. The increase in sr value is mainly due to the heightened content of Ge4 + with high polarizability. The Q <middle dot>f value improved by 2.21 times compared to the cordierite matrix, which can be primarily attributed to enhanced lattice energy, bond covalency, and hexagonal ring symmetry. The alteration in rf value arises from the variation of bond energy, bond strength, and distortion in the [MgO6 ] octahedra. These conclusions provide valuable insights for the design of silicate ceramics with higher Q <middle dot>f values. In addition, the dielectric properties in the microwave and terahertz bands were compared. The higher Q <middle dot>f and lower sr values in the terahertz band mainly result from the withdrawal of partial polarization mechanisms and differences in measurement methods. Mg2 Al4 (Si0.92 Ge0.08 )5 O18 ceramics, demonstrating an ultra-low sr value of 4.54 and an ultra-high Q <middle dot>f value of 286,533 GHz in the terahertz band, emerge as formidable contenders for future terahertz communications materials. Finally, a microstrip patch antenna was fabricated, achieving a bandwidth of 150 MHz at 4.78 GHz, which confirms the application in the n79 band for wireless communication. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:165 / 177
页数:13
相关论文