Potential anti-liver cancer targets and mechanisms of kaempferitrin based on network pharmacology, molecular docking and experimental verification

被引:3
作者
Zhou S. [1 ]
Zhang H. [1 ]
Li J. [1 ]
Li W. [1 ]
Su M. [1 ]
Ren Y. [1 ]
Ge F. [1 ]
Zhang H. [1 ]
Shang H. [1 ]
机构
[1] College of Life Science, Sichuan Normal University, Chengdu
关键词
Experimental verification in vivo and in vitro; Kaempferitrin; Liver cancer; Molecular docking; Network pharmacology;
D O I
10.1016/j.compbiomed.2024.108693
中图分类号
学科分类号
摘要
Aim: Kaempferitrin is an active component in Chenopodium ambrosioides, showing medicinal functions against liver cancer. This study aimed to identify the potential targets and pathways of kaempferitrin against liver cancer using network pharmacology and molecular docking, and verify the essential hub targets and pathway in mice model of SMMC-7721 cells xenografted tumors and SMMC-7721 cells. Methods: Kaempferitrin therapeutical targets were obtained by searching SwissTargetPrediction, PharmMapper, STITCH, DrugBank, and TTD databases. Liver cancer specific genes were obtained by searching GeneCards, DrugBank, TTD, OMIM, and DisGeNET databases. PPI network of “kaempferitrin-targets-liver cancer” was constructed to screen the hub targets. GO, KEGG pathway and MCODE clustering analyses were performed to identify possible enrichment of genes with specific biological subjects. Molecular docking and molecular dynamics simulation were employed to determine the docking pose, potential and stability of kaempferitrin with hub targets. The potential anti-liver cancer mechanisms of kaempferitrin, as predicted by network pharmacology analyses, were verified by in vitro and in vivo experiments. Results: 228 kaempferitrin targets and 2186 liver cancer specific targets were identified, of which 50 targets were overlapped. 8 hub targets were identified through network topology analysis, and only SIRT1 and TP53 had a potent binding activity with kaempferitrin as indicated by molecular docking and molecular dynamics simulation. MCODE clustering analysis revealed the most significant functional module of PPI network including SIRT1 and TP53 was mainly related to cell apoptosis. GO and KEGG enrichment analyses suggested that kaempferitrin exerted therapeutic effects on liver cancer possibly by promoting apoptosis via p21/Bcl-2/Caspase 3 signaling pathway, which were confirmed by in vivo and in vitro experiments, such as HE staining of tumor tissues, CCK-8, qRT-PCR and Western blot. Conclusion: This study provided not only insight into how kaempferitrin could act against liver cancer by identifying hub targets and their associated signaling pathways, but also experimental evidence for the clinical use of kaempferitrin in liver cancer treatment. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of Fei Jin Sheng Formula in the Treatment of Lung Cancer
    Zhang, Yun-Chao
    Gao, Wen-Cang
    Chen, Wei-Jian
    Pang, De-Xiang
    Mo, Da-Yu
    Yang, Min
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (14) : 1121 - 1134
  • [32] Potential molecular mechanisms of Ermiao san in the treatment of hyperuricemia and gout based on network pharmacology with molecular docking
    Geng, Yin-Hong
    Yan, Jia-Hui
    Han, Liang
    Chen, Zhe
    Tu, Sheng-Hao
    Zhang, Lin-Qi
    Song, Chun-Dong
    Duan, Feng-Yang
    Liu, Ya-Fei
    MEDICINE, 2022, 101 (37) : E30525
  • [33] Integrated Network Pharmacology, Molecular Docking, and Experimental Validation to Explore Potential Mechanisms of Sinomenine in the Treatment of Osteoarthritis
    Wang, Shaojun
    Lai, Fanglin
    Xiang, Ting
    Xu, Yan
    NATURAL PRODUCT COMMUNICATIONS, 2024, 19 (07)
  • [34] Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification
    Zhu, Yingyin
    Zhong, Wanling
    Peng, Jing
    Wu, Huichao
    Du, Shouying
    FRONTIERS IN GENETICS, 2021, 12
  • [35] The Potential Mechanisms of Catechins in Tea for Anti-Hypertension: An Integration of Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Tuo, Yanming
    Lu, Xiaofeng
    Tao, Fang
    Tukhvatshin, Marat
    Xiang, Fumin
    Wang, Xi
    Shi, Yutao
    Lin, Jinke
    Hu, Yunfei
    FOODS, 2024, 13 (17)
  • [36] The mechanism research on the anti-liver fibrosis of emodin based on network pharmacology
    Liang, Baoyu
    Gao, Liyuan
    Wang, Feixia
    Li, Zhanghao
    Li, Yujia
    Tan, Shanzhong
    Chen, Anping
    Shao, Jiangjuan
    Zhang, Zili
    Sun, Lixia
    Zhang, Feng
    Zheng, Shizhong
    IUBMB LIFE, 2021, 73 (09) : 1166 - 1179
  • [37] Anti cancer molecular mechanism of Actinidia chinensis Planch in gastric cancer based on network pharmacology and molecular docking
    Chen, Yuye
    Zhu, Xiaoyong
    Su, Xiyang
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2022, 21 (12) : 2591 - 2599
  • [38] Exploring Molecular Targets and Mechanisms of Apigenin in the Treatment of Papillary Thyroid Carcinoma Based on Network Pharmacology and Molecular Docking Analysis
    Li, Dongyu
    Wang, Lei
    Jing, Yuchen
    Jiang, Bo
    Zhao, Lei
    Miao, Yuxi
    Xin, Shijie
    Ge, Chunlin
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (10)
  • [39] Potential Mechanism of Dingji Fumai Decoction Against Atrial Fibrillation Based on Network Pharmacology, Molecular Docking, and Experimental Verification Integration Strategy
    Liang, Yi
    Liang, Bo
    Chen, Wen
    Wu, Xin-Rui
    Liu-Huo, Wu-Sha
    Zhao, Li-Zhi
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [40] Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking
    Xiao, Yu-Gang
    Wu, Han-Biao
    Chen, Ji-Sheng
    Li, Xiong
    Qiu, Zhi-Kun
    METABOLIC BRAIN DISEASE, 2022, 37 (04) : 1071 - 1094