Direct regeneration of LiFePO4 cathode by inherent impurities in spent lithium-ion batteries

被引:2
|
作者
Huang, Meiting [1 ]
Wang, Zhihao [1 ]
Yang, Haitao [1 ,2 ]
Yang, Liming [1 ]
Chen, Kechun [1 ]
Yu, Haoxuan [1 ]
Xu, Chenxi [3 ]
Guo, Yingying [1 ]
Shao, Penghui [1 ]
Chen, Liang [4 ]
Luo, Xubiao [1 ,5 ]
机构
[1] Nanchang Hangkong Univ, Natl Local Joint Engn Res Ctr Heavy Met Pollutants, Nanchang 330063, Peoples R China
[2] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Peoples R China
[3] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Hunan, Peoples R China
[4] Hunan Inst Sci & Technol, Sch Chem & Chem Engn, Key Lab Hunan Prov Adv Carbon Based Funct Mat, Yueyang 414006, Peoples R China
[5] Jinggangshan Univ, Sch Life Sci, Jian 343009, Peoples R China
基金
中国博士后科学基金;
关键词
Direct regeneration; S-LFP cathode; Conductive carbon; PVDF; Electrochemical performance; IRON PHOSPHATE;
D O I
10.1016/j.jcis.2024.10.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct regeneration method, recognized for its cost-effectiveness, has garnered considerable attentions in the field of battery recycling. In this study, a novel direct regeneration strategy is proposed to repair spent LiFePO4 (S-LFP) cathodes without the need for impurity removal. Instead, the residual conductive carbon and polyvinylidene fluoride (PVDF) in S-LFP are employed as inherent reductive agents. Systematic characterization and analysis reveal that the failure of S-LFP primarily originates from a substantial loss of Li+ and the conversion of LiFePO4 to FePO4. Meanwhile, it is demonstrated that both residual conductive carbon and PVDF play positive roles in promoting the regeneration of S-LFP through distinct mechanisms. As a result, the regenerated LFP exhibits significant recovery in crystal structure and chemical composition as compared to S-LFP, which leads to notably improved lithium storage performance. Furthermore, to further enhance the lithium storage property, a specific amount of glucose (10 %) is introduced during the regeneration of S-LFP, yielding a regenerated product that performs comparably to commercial LFP. Clearly, our approach, in contrast to traditional regeneration methods, maximizes the utilization of residual impurities within S-LFP, resulting in effective regeneration of SLFP, thereby proving both informative and cost-effective.
引用
收藏
页码:586 / 597
页数:12
相关论文
共 50 条
  • [31] Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries
    Li, Hongyan
    Xie, Shuhan
    Zhang, Yanru
    Wang, Yongjing
    Wang, Yonghao
    Lyu, Yuancai
    Lin, Chunxiang
    Li, Xiaojuan
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (09): : 5207 - 5216
  • [32] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL VII, 2011, : 515 - 519
  • [33] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [34] Effect of Na plus in situ doping on LiFePO4/C cathode material for lithium-ion batteries
    Liu, Yan
    Qin, Wenchao
    Zhang, Dengke
    Feng, Liwei
    Wu, Lei
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2021, 31 (01) : 14 - 18
  • [35] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    Liu Shu-Xin
    Yin Heng-Bo
    Wang Hai-Bin
    He Ji-Chuan
    Wang Hong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 33 (03) : 353 - 360
  • [36] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    刘树信
    殷恒波
    王海滨
    何冀川
    王洪
    Chinese Journal of Structural Chemistry, 2014, 33 (03) : 353 - 360
  • [37] Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries
    Toprakci, Ozan
    Toprakci, Hatice A. K.
    Ji, Liwen
    Zhang, Xiangwu
    KONA POWDER AND PARTICLE JOURNAL, 2010, (28) : 50 - 73
  • [38] Direct Regenerating Cathode Materials from Spent Lithium-Ion Batteries
    Lan, Yuanqi
    Li, Xinke
    Zhou, Guangmin
    Yao, Wenjiao
    Cheng, Hui-Ming
    Tang, Yongbing
    ADVANCED SCIENCE, 2024, 11 (01)
  • [39] GLYCINE-ASSISTED SOL-GEL SYNTHESIS OF LiFePO4/C CATHODE MATERIALS FOR LITHIUM-ION BATTERIES
    Hu, Shiguang
    Zhang, Tianjing
    Cao, Hujun
    Zhang, Hongmei
    Li, Zhaohui
    Lei, Gangtie
    FUNCTIONAL MATERIALS LETTERS, 2010, 3 (03) : 217 - 221
  • [40] Sonoprocessing of LiFePO4 Nanoparticles and Nanocomposites for Cathode Material in Lithium Ion Batteries
    Bhagawat, L. I.
    Patil, V. S.
    Kale, B. B.
    Sonawane, S. H.
    Bhanvase, B. A.
    Pinjari, D. V.
    Ashokkumar, M.
    POLYMER COMPOSITES, 2016, 37 (06) : 1874 - 1880