Nanofluidic osmotic energy devices based on metal-organic frameworks

被引:1
|
作者
Yao, Chenling [1 ]
Li, Guilong [1 ]
Zeng, Huan [1 ]
Wu, Caiqin [1 ]
Zhou, Jialing [1 ]
Wang, Jian [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks (MOFs); Reverse electrodialysis (RED); Osmotic energy conversion; Selectivity and permeability; SALINITY-GRADIENT POWER; REVERSE ELECTRODIALYSIS; GENERATION; MEMBRANES; DENSITY;
D O I
10.1016/j.mseb.2024.117931
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The use of reverse electrodialysis (RED) technology to collect clean and renewable salinity gradient energy is one of the effective ways to alleviate energy crisis and environmental problems. The ion exchange membranes (IEMs) used by traditional RED usually has problems such as low energy conversion efficiency and insufficient power density. Nanofluidic reverse electrodialysis (NRED), inspired by biological ion channels, seems to be able to solve these problems. Recently, metal-organic frameworks (MOFs) have become candidates for capturing osmotic energy due to excellent ion selective permeability, nanoscale pores and easy functionalization. In this paper, the recent progress of MOF-based nanofluidic devices for osmotic energy harvesting is reviewed. Then, we discuss the key factors that affect the osmotic energy harvesting in the nanochannel membranes, including surface charge, pore size, pore density, ion channel length and structure, and ionic diode behavior. Finally, the future development and challenges of MOF-based nanofluidic devices are prospected.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices
    Majumder, Mandira
    Santosh, Mysore Sridhar
    Viswanatha, Ramarao
    Thakur, Anukul K.
    Dubal, Deepak P.
    Jayaramulu, Kolleboyina
    ENERGY STORAGE MATERIALS, 2021, 37 : 396 - 416
  • [22] Metal-organic frameworks for next-generation energy storage devices; a systematic review
    Sandhu, Zeshan Ali
    Raza, Muhammad Asam
    Awwad, Nasser S.
    Ibrahium, Hala A.
    Farwa, Umme
    Ashraf, Sawera
    Dildar, Arooj
    Fatima, Eman
    Ashraf, Sufyan
    Ali, Furqan
    MATERIALS ADVANCES, 2024, 5 (01): : 30 - 50
  • [23] Integration of devices based on metal-organic frameworks: A promising platform for chemical sensing
    Wang, Xiaowen
    Ma, Teng
    Ma, Jian-Gong
    Cheng, Peng
    COORDINATION CHEMISTRY REVIEWS, 2024, 518
  • [24] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [25] Metal-Organic Framework Nanofluidic Synapse
    Yu, Si-Yuan
    Hu, Jin
    Li, Zheng
    Xu, Yi-Tong
    Yuan, Cheng
    Jiang, Dechen
    Zhao, Wei-Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (39) : 27022 - 27029
  • [26] Metal-organic frameworks (COFs) and covalent organic frameworks (COFs) for energy storage
    Feng, Dawei
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Recent Advances in Metal-Organic Frameworks Based on Electrospinning for Energy Storage
    Yao, Shunyu
    Ramakrishna, Seeram
    Chen, Gang
    ADVANCED FIBER MATERIALS, 2023, 5 (05) : 1592 - 1617
  • [28] Metal-Organic Frameworks for Ammonia-Based Thermal Energy Storage
    An, Guoliang
    Xia, Xiaoxiao
    Wu, Shaofei
    Liu, Zhilu
    Wang, Liwei
    Li, Song
    SMALL, 2021, 17 (44)
  • [29] Superfast Water Transport Zwitterionic Polymeric Nanofluidic Membrane Reinforced by Metal-Organic Frameworks
    Ji, Yan-Li
    Gu, Bing-Xin
    Xie, Shi-Jie
    Yin, Ming-Jie
    Qian, Wei-Jie
    Zhao, Qiang
    Hung, Wei-Song
    Lee, Kueir-Rarn
    Zhou, Yong
    An, Quan-Fu
    Gao, Cong-Jie
    ADVANCED MATERIALS, 2021, 33 (38)
  • [30] Porous metal-organic frameworks based on covalently interconnected metal-organic cuboctahedra
    Hong, Seunghee
    Park, Mira
    Liu, Xinfang
    Oh, Minhak
    Lah, Myoung Soo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237