Direct kinetic loss analysis with hierarchy configuration of catalyst coated membrane in proton exchange membrane water electrolysis cell

被引:0
|
作者
He, Yunlong [1 ]
Feng, Suyang [1 ]
Chen, Hui [2 ]
Liu, Yun [1 ]
Shi, Xiaodong [1 ]
Rao, Peng [1 ]
Li, Jing [1 ]
Wu, Xiao [3 ]
Huang, Shuyi [3 ]
Li, Ke [3 ]
Wang, Hao [4 ]
Tian, Xinlong [1 ]
Kang, Zhenye [1 ,2 ]
机构
[1] Hainan Univ, Sch Marine Sci & Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Hainan, Peoples R China
[2] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[3] Natl Energy Grp Ledong Power Generat Co Ltd, Ledong 572539, Peoples R China
[4] Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Proc, State Key Lab Multiphase Complex Syst, CAS Key Lab Green Proc & Engn,Inst Proc Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Water electrolysis; Hydrogen production; Electrode kinetics; Exchange current density; Degradation; PERFORMANCE; ELECTRODES;
D O I
10.1016/j.fuel.2024.133028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrode kinetics and degradation originations are key factors for proton exchange membrane water electrolyzer (PEMWE). However, it is hard to directly characterize these factors in an operating PEMWE, which is because of the coupled components. In this study, we fabricate a hierarchy configured catalyst coated membrane by implementing voltage sensing wires, which enables the in-situ characterization on each part in a PEMWE. Specially, using the integrated configuration, the voltages on anode and cathode electrode can be measured, which provides a chance for determining the kinetics of the electrode. The exchange current density and charge transfer coefficient could be easily obtained. This integrated hierarchy configuration provides a reliable pathway for developing usable catalyst materials and optimizing catalyst layers. The impedance on an inner component can also be measured, and we find that the kinetics are the main losses for both anode and cathode electrode, which contribute to more than 96.6% to electrode voltage loss in low current density range. Additionally, the technique can monitor the internal voltages in an operating PEMWE, which provides valuable data for performance change diagnostic and analysis. The hierarchy configuration enriches the PEMWE characterization methods, and has great promise for industrial applications due to its easy setup and high feasibility.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Proton Exchange Membrane Water Electrolysis Incorporating Sulfo-Phenylated Polyphenylene Catalyst Coated Membranes
    Wang, Xin
    Mardle, Peter
    Adamski, Michael
    Chen, Binyu
    Holdcroft, Steven
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (02)
  • [2] A novel catalyst coated membrane embedded with Cs-substituted phosphotungstates for proton exchange membrane water electrolysis
    Liu, Gaoyang
    Xu, Junyuan
    Wang, Yituo
    Jiang, Juming
    Wang, Xindong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) : 14531 - 14539
  • [3] Safety analysis of proton exchange membrane water electrolysis system
    Liu, Yuanxing
    Amin, Md. Tanjin
    Khan, Faisal
    Pistikopoulos, Efstratios N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [4] Experimental Study on the Catalyst-Coated Membrane of a Proton Exchange Membrane Electrolyzer
    Rocha, Amadeu Gomes
    Ferreira, Rui
    Falcao, Daniela
    Pinto, Alexandra M. F. R.
    ENERGIES, 2022, 15 (21)
  • [5] Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis
    Jeong, Jae-Hyeun
    Shin, Eun-Kyung
    Jeong, Jae-Jin
    Na, Il-Chai
    Chu, Cheun-Ho
    Park, Kwon-Pil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2014, 52 (06): : 695 - 700
  • [6] Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells
    Kang, Zhenye
    Wang, Min
    Yang, Yingjie
    Wang, Hao
    Liu, Yanrong
    Mo, Jingke
    Li, Jing
    Deng, Peilin
    Jia, Chunman
    Tian, Xinlong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 5807 - 5816
  • [7] Studying Performance and Kinetic Differences between Various Anode Electrodes in Proton Exchange Membrane Water Electrolysis Cell
    Kang, Zhenye
    Fan, Zihao
    Zhang, Fan
    Zhang, Zhenyu
    Tian, Chao
    Wang, Weina
    Li, Jing
    Shen, Yijun
    Tian, Xinlong
    MATERIALS, 2022, 15 (20)
  • [8] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    Wang ZhiMing
    Xu Chao
    Wang XueYe
    Liao ZhiRong
    Du XiaoZe
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1555 - 1566
  • [9] Membrane and IrO2 Catalyst Conditioning of Proton Exchange Membrane Water Electrolysis by Applying Voltage
    Akita, Itsuka
    Nara, Miyuki
    Koike, Kazuki
    Murakami, Takeharu
    Fujii, Katsushi
    Ogawa, Takayo
    Wada, Satoshi
    Ogura, Atsushi
    ELECTROCHEMISTRY, 2025, 93 (03)
  • [10] Single atom catalysts for water electrolysis: from catalyst-coated substrate to catalyst-coated membrane
    Lee, Sol A.
    Jun, Sang Eon
    Park, Sun Hwa
    Kwon, Ki Chang
    Kang, Jong Hun
    Kwon, Min Sang
    Jang, Ho Won
    EES CATALYSIS, 2024, 2 (01): : 49 - 70