Numerical modeling of thermoelectric thomson effect in phase change memory bridge structures

被引:10
作者
Dirisaglik, Faruk [1 ]
Bakan, Gokhan [1 ]
Faraclas, Azer [1 ]
Gokirmak, Ali [1 ]
Silva, Helena [1 ]
机构
[1] Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-4157
基金
美国国家科学基金会;
关键词
Phase change memory; thermoelectric effects; thomson effect;
D O I
10.1142/S0129156414500049
中图分类号
学科分类号
摘要
Phase change memory is a non-volatile memory technology that utilizes the electrical resistivity contrast between resistive amorphous and conductive crystalline phases of phase change materials. These devices operate at high current densities and high temperature gradients which lead to significant thermoelectric effects. We have performed numerical modeling of electrothermal effects in p-type Ge2Sb2Te5 phase change memory structures suspended on TiN contact pads using COMSOL Multiphysics. Temperature dependent material parameters are used in the model. Strong asymmetry is observed in temperature profiles in all cases: the hottest spot appears closer to the higher potential end suggesting that the thermal profile can be significantly altered by the thermoelectric effects during device operation. Hence, thermoelectric effects need to be considered for device designs for lower power and higher reliability devices. © 2014 World Scientific Publishing Company.
引用
收藏
页码:1 / 2
相关论文
共 29 条
[1]  
Wong H.P., Raoux S., Kim S.B., Liang J., Reifenberg J.P., Rajendran B., Asheghi M., Goodson K.E., Phase change memory, Proceedings of the IEEE, 98, pp. 2201-2227, (2010)
[2]  
Raoux S., Wuttig M., Pieterson L.V., Phase Change Materials: Science and Applications, (2008)
[3]  
Lankhorst M.H.R., Ketelaars B.W., Wolters R., Low-cost and nanoscale non-volatile memory concept for future silicon chips, Nature Materials, 4, pp. 347-352, (2005)
[4]  
Chen Y.C., Rettner C.T., Raoux S., Burr G.W., Chen S.H., Shelby R.M., Salinga M., Risk W.P., Happ T.D., McClelland G.M., Ultra-thin phase-change bridge memory device using GeSb, IEDM 2006, IEEE International Electron Devices Meeting, (2006)
[5]  
Mastrangelo C.H., Yeh J.H.J., Muller R.S., Electrical and optical characteristics of vacuum-sealed polysilicon microlamps, IEEE Transactions on Electron Devices, 39, pp. 1363-1375, (1992)
[6]  
Englander O., Christensen D., Lin L., Local synthesis of silicon nanowires and carbon nanotubes on microbridges, Appl. Phys. Lett., 82, (2003)
[7]  
Jungen A., Pfenninger M., Tonteling M., Stampfer C., Hierold C., Electrothermal effects at the microscale and their consequences on system design, J Micromech Microengineering, 16, pp. 1633-1638, (2006)
[8]  
Bakan G., Khan N., Cywar A., Cil K., Akbulut M., Gokirmak A., Silva H., Self-heating of silicon microwires: Crystallization and thermoelectric effects, J. Mater. Res., 26, pp. 1061-1071, (2011)
[9]  
Bakan G., Khan N., Silva H., Gokirmak A., High-temperature thermoelectric transport at small scales: Thermal generation, transport and recombination of minority carriers, Sci. Rep., 3, (2013)
[10]  
Castro D.T., Goux L., Hurkx G., Attenborough K., Delhougne R., Lisoni J., Jedema F., Zandt M., Wolters R., Gravesteijn D., Evidence of the thermo-electric thomson effect and influence on the program conditions and cell optimization in phase-change memory cells, Electron Devices Meeting 2007. IEDM 2007. IEEE International Electron Devices Meeting, pp. 315-318, (2007)