Automatic detection of atrial fibrillation for mobile devices

被引:0
作者
Kaiser S. [1 ]
Kirst M. [1 ]
Kunze C. [1 ]
机构
[1] FZI Forschungszentrum Informatik, Karlsruhe
来源
Communications in Computer and Information Science | 2010年 / 52卷
关键词
Diseases - Signal processing;
D O I
10.1007/978-3-642-11721-3_20
中图分类号
学科分类号
摘要
Two versions of a new detector for automatic real-time detection of atrial fibrillation in non-invasive ECG signals are introduced. The methods are based on beat to beat variability, tachogram analysis and simple signal filtering. The implementation on mobile devices is made possible due to the low demand on computing power of the employed analysis procedures. The proposed algorithms correctly identified 436 of 440 five minute episodes of atrial fibrillation or flutter and also correctly identified up to 302 of 342 episodes of no atrial fibrillation, including normal sinus rhythm as well as other cardiac arrhythmias. These numbers correspond to a sensitivity of 99.1 % and a specificity of 88.3%. © 2010 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:258 / 270
页数:12
相关论文
共 13 条
[1]  
Heeringa J., Van Der Kuip D., Hofman A., Kors J., Van Herpen G., Stricker B., Stijnen T., Lip G., Witteman J., Prevalence, incidence and lifetime risk of atrial fibrillation: The Rotterdam study, Europace, (2006)
[2]  
Ringborg A., Nieuwlaat R., Lindgren P., Jonsson B., Fidan D., Maggioni A., Lopez- Sendon J., Stepinska J., Cokkinos D., Crijns H., Costs of atrial fibrillation in five European countries: Results from the Euro Heart Survey on atrial fibrillation, Europace, 10, pp. 403-411, (2008)
[3]  
Hohnloser P.D.S., Gronefeld P.D.D.G., Israel P.D.D.C., Prophylaxe und Therapie von Vorhofflimmern, (2005)
[4]  
Kim J., Bocek J., White H., Crone B., Alferness C., Adams J., An Atrial Fibrillation Detection Algorithm for An Implantable Atrial Defibrillator, pp. 169-172, (1995)
[5]  
Logan B., Healey J., Robust Detection of Arial Fibrillation for a a Long Term Telemonitoring System, IEEE Computers for Cardiology, pp. 391-394, (2005)
[6]  
Tateno K., Glass L., AMethod for Detection of Atrial Fibrillation using RR Intervals, IEEE Computers for Cardiology, pp. 391-394, (2000)
[7]  
Artis S., Mark R., Moody G., Detection of Atrial Fibrillation using Artificial Neural Networks, IEEE Proceedings on Computers in Cardiology, pp. 173-176, (1991)
[8]  
Sadek L.E., Ropella K.M., Detection of Atrial Fibrillation from the Surface Electrocardiogram using Magnitude-Squared Coherence, IEEE Engineering in Medicine and Biology Society, 1, pp. 179-180, (1995)
[9]  
Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E., PhysioBank PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101, 23, (2000)
[10]  
Kirst M., Ottenbacher J., Nedkov R., UNISENS - Ein universelles Datenformat für Multisensordaten, Biosignalverarbeitung : Innovationen Bei der Erfassung und Analyse Bioelektrischer und Biomagnetischer Signale, pp. 106-108, (2008)