Data-Driven Learning to Detect Characteristic Kinetics in Ultrasound Images of Arthritis

被引:2
作者
机构
[1] Department of Information Engineering, University of Padova, Padua
[2] Department of Medicine, University of Padova, Padua
[3] Internal Medicine Clinic, Bolzano General Hospital, Bolzano
来源
Grisan, Enrico (enrico@dei.unipd.it) | 1600年 / Springer Verlag卷 / 8680期
关键词
Contrast enhanced ultrasound; Kinetics analysis; Parameter estimation; Psoriatic arthritis; Rheumatoid arthritis; Sparse dictionary Learning;
D O I
10.1007/978-3-319-13909-8_3
中图分类号
学科分类号
摘要
Contrast Enhanced Ultrasound (CEUS) is a sensitive imaging technique to assess synovial vascularization and perfusion, allowing a pixel-wise perfusion quantification that can be used to distinguish different forms of disease and help their early detection. However, the high dimensionality of the perfusion parameter space prevents an easy understanding of the underlying pathological changes in the synovia. In order extract relevant clinical information, we present a data-driven method to identify the perfusions patterns characterizing the different types of arthritis, exploiting a sparse representation obtained from a dictionary of basis signals learned from the data. For each CEUS examination, a first clustering step was performed to reduce data redundancy. Then a sparse dictionary was learnt from the centroids. The perfusion time-curves were represented as a sparse linear combination of the basis signals, estimating the coefficients via a LASSO algorithm. With this representation, we were able to characterize each pathology through a small number of predominant kinetics. By using sparse representation of CEUS signals and data-driven dictionary learning techniques we were able to differentiate the specific kinetics patterns in different type of arthritis, suggesting the possibility of personalizing the description of each patient’s type of arthritis in terms of relative frequency of the detected patterns. Interestingly, we also found that rheumatoid and psoriatic arthritis share some common perfusion behaviors. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:17 / 24
页数:7
相关论文
共 15 条
[1]  
Hootman J., Helmick C., Projections of US prevalence of arthritis ans associated activity limitations, Arthritis Rheum, 54, pp. 226-229, (2006)
[2]  
Helmick C., Felson D., Lawrence R., Gabriel S., Hirsch R., Kwoh C., Liang M., Kremers H., Mayes M., Merkel P., Pillemer S., Reveille J., Stone J., Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part, I. Arthritis Rheum, 58, 1, pp. 15-25, (2008)
[3]  
Majithia V., Geraci S., Rheumatoid arthritis: Diagnosis and management, Am. J. Med, 120, 11, pp. 936-939, (2007)
[4]  
Koch A., Angiogenesis as a target in rheumatoid arthritis, Ann. Rheum. Dis, 62, pp. 60-67, (2003)
[5]  
Biliavska T., Stamm J., Martinez-avila T., Huizinga R., Landewe G., Steiner D., Aletaha J., Smolen K., Machold: Application of the 2010 ACR/EULAR classification criteria in patients with very early inflammatory arthritis: Analysis of sensitivity, specificity and predictive values in the SAVE study cohort, Ann. Rheum. Dis, 72, pp. 1335-1341, (2013)
[6]  
Klauser A., Demharter J., Marchi A.D., Sureda D., Barile A., Masciocchi C., Faletti C., Schirmer M., Kleffel T., Bohndorf K., Contrast enhanced gray-scale sonography in assessment of joint vascularity in rheumatoid arthritis: Results from the IACUS study group, Eur Radiol, 15, 12, pp. 2404-2410, (2005)
[7]  
Grisan E., Raffeiner B., Coran A., Rizzo G., Ciprian L., Stramare R., Dynamic automated synovial imaging (DASI) for differential diagnosis of rheumatoid arthritis, Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 9035, (2014)
[8]  
Grisan E., Raffeiner B., Coran A., Rizzo G., Ciprian L., Stramare R., A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis, Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 9040, (2014)
[9]  
Aharon M., Elad M., Bruckstein A., K-SVD: An algorithm for designing over-complete dictionaries for sparse representation, IEEE Trans. Sig. Process, 54, 11, pp. 4311-4322, (2006)
[10]  
Mairal J., Sapiro G., Elad M., Learning multiscale sparse representations for image and video restoration, Proceedings of International Conference of Computer Vision, pp. 2272-2279, (2007)