Exponentially quasi-synchronization control of quaternion-valued memristive neural networks: matrix measure strategies and Frobenius norm methods

被引:0
作者
Liu, Yutang [1 ]
Zhang, Qin [2 ]
Li, Ruoxia [3 ]
机构
[1] Henan Inst Technol, Sch Sci, Xinxiang 453003, Henan, Peoples R China
[2] Xinxiang Univ, Sch Math & Stat, Xinxiang 453003, Henan, Peoples R China
[3] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Peoples R China
关键词
Quasi-synchronization; Quaternion; Memristive neural networks; Matrix measure; Frobenius norm; ADAPTIVE SYNCHRONIZATION; DISSIPATIVITY; STABILITY;
D O I
10.1007/s11227-024-06699-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work explores the exponentially quasi-synchronization control of quaternion-valued memristive neural networks. The entire analysis does not use reduced-order conversion, nor does it involve the separation of real and imaginary parts, but directly focuses on the original system, which preserved the integrity of the quaternion-valued system. First, the definition of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{x}$$\end{document}, x is an element of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {Q}$$\end{document} is first introduce, which provides new methods to investigate quaternion-valued systems in a compact form. Second, using Frobenius norm, the derived conclusions contain much more information of the matrix elements compared with the traditional 1-norm or 2-norm. Eventually, numerical examples are carried out to verify the derived schemes.
引用
收藏
页数:18
相关论文
共 40 条
  • [1] Aubin Jean-Pierre., 1984, Set-valued maps and viability theory, V264, pxiii+342
  • [2] Exponential State Estimation for Delayed Competitive Neural Network Via Stochastic Sampled-Data Control with Markov Jump Parameters Under Actuator Failure
    Cao, Yang
    Subhashri, A. R.
    Chandrasekar, A.
    Radhika, T.
    Przybyszewski, Krzysztof
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2024, 14 (04) : 373 - 385
  • [3] Input-to-state stability of stochastic Markovian jump genetic regulatory networks
    Cao, Yang
    Chandrasekar, A.
    Radhika, T.
    Vijayakumar, V.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 174 - 187
  • [4] Adaptive Synchronization of Fractional-Order Uncertain Complex-Valued Competitive Neural Networks under the Non-Decomposition Method
    Chen, Shenglong
    Luo, Xupeng
    Yang, Jikai
    Li, Zhiming
    Li, Hongli
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [5] New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters
    Chen, Shenglong
    Yang, Jikai
    Li, Zhiming
    Li, Hong-Li
    Hu, Cheng
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 175
  • [6] Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks
    Chen, Shenglong
    Li, Hong-Li
    Wang, Leimin
    Hu, Cheng
    Jiang, Haijun
    Li, Zhiming
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (04): : 804 - 823
  • [7] Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks
    Chen, Shenglong
    Li, Hong-Li
    Bao, Haibo
    Zhang, Long
    Jiang, Haijun
    Li, Zhiming
    [J]. NEUROCOMPUTING, 2022, 511 : 290 - 298
  • [8] Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons
    Chen, Xiaofeng
    Song, Qiankun
    Li, Zhongshan
    Zhao, Zhenjiang
    Liu, Yurong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 2769 - 2781
  • [9] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [10] Complete stability of feedback CNNs with dynamic memristors and second-order cells
    Di Marco, Mauro
    Forti, Mauro
    Pancioni, Luca
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2016, 44 (11) : 1959 - 1981