Theoretical and data-driven approaches to semiconductors and dielectrics: from prediction to experiment

被引:0
作者
Oba, Fumiyasu [1 ]
Nagai, Takayuki [2 ,9 ,10 ]
Katsube, Ryoji [3 ,11 ]
Mochizuki, Yasuhide [1 ,12 ]
Tsuji, Masatake [1 ,13 ]
Deffrennes, Guillaume [4 ,14 ]
Hanzawa, Kota [1 ]
Nakano, Akitoshi [2 ]
Takahashi, Akira [1 ]
Terayama, Kei [5 ,6 ]
Tamura, Ryo [7 ,8 ]
Hiramatsu, Hidenori [1 ]
Nose, Yoshitaro [3 ]
Taniguchi, Hiroki [2 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Japan
[3] Kyoto Univ, Dept Mat Sci & Engn, Kyoto, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Japan
[5] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama, Japan
[6] RIKEN, RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
[7] Natl Inst Mat Sci, Ctr Basic Res Mat, Tsukuba, Japan
[8] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Japan
[9] Univ Tokyo, Quantum Phase Elect Ctr QPEC, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[10] Univ Tokyo, Dept Appl Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[11] Nagoya Univ, Dept Mat Proc Engn, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[12] Inst Sci Tokyo, Sch Mat & Chem Technol, Dept Mat Sci & Engn, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[13] Inst Sci Tokyo, Inst Integrated Res, MDX Res Ctr Element Strategy, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[14] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
关键词
Semiconductors; dielectrics; photovoltaics; phase diagrams; first-principles calculations; machine learning; PLANE-WAVE; IMPROPER FERROELECTRICITY; NITRIDE PEROVSKITE; SOLAR-CELLS; THIN-FILMS; DENSITY; OXIDE; EXCHANGE; POLAR; TRANSITION;
D O I
10.1080/14686996.2024.2423600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational approaches using theoretical calculations and data scientific methods have become increasingly important in materials science and technology, with the development of relevant methodologies and algorithms, the availability of large materials data, and the enhancement of computer performance. As reviewed herein, we have developed computational methods for the design and prediction of inorganic materials with a particular focus on the exploration of semiconductors and dielectrics. High-throughput first-principles calculations are used to systematically and accurately predict the local atomic and electronic structures of polarons, point defects, surfaces, and interfaces, as well as bulk fundamental properties. Machine learning techniques are utilized to efficiently predict various material properties, construct phase diagrams, and search for materials satisfying target properties. These computational approaches have elucidated the mechanisms behind material functionalities and explored promising materials in combination with synthesis, characterization, and device fabrication. Examples include the development of ternary nitride semiconductors for potential optoelectronic and photovoltaic applications, the exploration of phosphide semiconductors and the optimization of heterointerfaces toward the improvement of phosphide-based photovoltaic cells, and the discovery of ferroelectricity in layered perovskite oxides and the theoretical understanding of its origin, all of which demonstrate the effectiveness of our computer-aided materials research.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Data-driven based fracture prediction of notched components
    Talebi, Hossein
    Bahrami, Bahador
    Daneshfar, Mohammad
    Bagherifard, Sara
    Ayatollahi, Majid R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2264):
  • [42] Data-Driven Wildfire Risk Prediction in Northern California
    Malik, Ashima
    Rao, Megha Rajam
    Puppala, Nandini
    Koouri, Prathusha
    Thota, Venkata Anil Kumar
    Liu, Qiao
    Chiao, Sen
    Gao, Jerry
    ATMOSPHERE, 2021, 12 (01)
  • [43] Recent advances in data-driven prediction for wind power
    Liu, Yaxin
    Wang, Yunjing
    Wang, Qingtian
    Zhang, Kegong
    Qiang, Weiwei
    Wen, Qiuzi Han
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [44] Porosity prediction from pre-stack seismic data via a data-driven approach
    Yang, Naxia
    Li, Guofa
    Zhao, Pingqi
    Zhang, Jialiang
    Zhao, Dongfeng
    JOURNAL OF APPLIED GEOPHYSICS, 2023, 211
  • [45] Data-Driven Adaptive Prediction of Cloud Resource Usage
    Piotr Nawrocki
    Patryk Osypanka
    Beata Posluszny
    Journal of Grid Computing, 2023, 21
  • [46] Data-Driven Method for the Prediction of Estimated Time of Arrival
    Gui, Xuhao
    Zhang, Junfeng
    Peng, Zihan
    Yang, Chunwei
    TRANSPORTATION RESEARCH RECORD, 2021, 2675 (12) : 1291 - 1305
  • [47] Performance Prediction for Data-driven Workflows on Apache Spark
    Gulino, Andrea
    Canakoglu, Arif
    Ceri, Stefano
    Ardagna, Danilo
    2020 IEEE 28TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2020), 2020, : 167 - +
  • [48] Editorial: Advances in data-driven approaches and modeling of complex systems
    Mohd, Mohd Hafiz
    Nguyen-Huu, Tri
    Park, Junpyo
    Addawe, Joel M.
    Haga, Hirohide
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [49] Pedestrian inertial navigation: An overview of model and data-driven approaches
    Klein, Itzik
    RESULTS IN ENGINEERING, 2025, 25
  • [50] Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Koufopoulos, Petros
    Kalantzi, Sofia
    Theodorakis, Nikolaos
    Nikolaou, Maria
    Paxinou, Evgenia
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Feretzakis, Georgios
    ANTIBIOTICS-BASEL, 2024, 13 (11):