Theoretical and data-driven approaches to semiconductors and dielectrics: from prediction to experiment

被引:0
|
作者
Oba, Fumiyasu [1 ]
Nagai, Takayuki [2 ,9 ,10 ]
Katsube, Ryoji [3 ,11 ]
Mochizuki, Yasuhide [1 ,12 ]
Tsuji, Masatake [1 ,13 ]
Deffrennes, Guillaume [4 ,14 ]
Hanzawa, Kota [1 ]
Nakano, Akitoshi [2 ]
Takahashi, Akira [1 ]
Terayama, Kei [5 ,6 ]
Tamura, Ryo [7 ,8 ]
Hiramatsu, Hidenori [1 ]
Nose, Yoshitaro [3 ]
Taniguchi, Hiroki [2 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Japan
[3] Kyoto Univ, Dept Mat Sci & Engn, Kyoto, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Japan
[5] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama, Japan
[6] RIKEN, RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
[7] Natl Inst Mat Sci, Ctr Basic Res Mat, Tsukuba, Japan
[8] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Japan
[9] Univ Tokyo, Quantum Phase Elect Ctr QPEC, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[10] Univ Tokyo, Dept Appl Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[11] Nagoya Univ, Dept Mat Proc Engn, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[12] Inst Sci Tokyo, Sch Mat & Chem Technol, Dept Mat Sci & Engn, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[13] Inst Sci Tokyo, Inst Integrated Res, MDX Res Ctr Element Strategy, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[14] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
关键词
Semiconductors; dielectrics; photovoltaics; phase diagrams; first-principles calculations; machine learning; PLANE-WAVE; IMPROPER FERROELECTRICITY; NITRIDE PEROVSKITE; SOLAR-CELLS; THIN-FILMS; DENSITY; OXIDE; EXCHANGE; POLAR; TRANSITION;
D O I
10.1080/14686996.2024.2423600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational approaches using theoretical calculations and data scientific methods have become increasingly important in materials science and technology, with the development of relevant methodologies and algorithms, the availability of large materials data, and the enhancement of computer performance. As reviewed herein, we have developed computational methods for the design and prediction of inorganic materials with a particular focus on the exploration of semiconductors and dielectrics. High-throughput first-principles calculations are used to systematically and accurately predict the local atomic and electronic structures of polarons, point defects, surfaces, and interfaces, as well as bulk fundamental properties. Machine learning techniques are utilized to efficiently predict various material properties, construct phase diagrams, and search for materials satisfying target properties. These computational approaches have elucidated the mechanisms behind material functionalities and explored promising materials in combination with synthesis, characterization, and device fabrication. Examples include the development of ternary nitride semiconductors for potential optoelectronic and photovoltaic applications, the exploration of phosphide semiconductors and the optimization of heterointerfaces toward the improvement of phosphide-based photovoltaic cells, and the discovery of ferroelectricity in layered perovskite oxides and the theoretical understanding of its origin, all of which demonstrate the effectiveness of our computer-aided materials research.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Theoretical and Data-Driven Approaches for Biomolecular Condensates
    Saar, Kadi L.
    Qian, Daoyuan
    Good, Lydia L.
    Morgunov, Alexey S.
    Collepardo-Guevara, Rosana
    Best, Robert B.
    Knowles, Tuomas P. J.
    CHEMICAL REVIEWS, 2023, 123 (14) : 8988 - 9009
  • [2] Data-driven approaches for runoff prediction using distributed data
    Heechan Han
    Ryan R. Morrison
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2153 - 2171
  • [3] Data-driven approaches for runoff prediction using distributed data
    Han, Heechan
    Morrison, Ryan R.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (08) : 2153 - 2171
  • [4] Applications of data-driven approaches in prediction of fatigue and fracture
    Nasiri, Sara
    Khosravani, Mohammad Reza
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [5] Prediction of lateral spread displacement: data-driven approaches
    Liu, Zheng
    Tesfamariam, Solomon
    BULLETIN OF EARTHQUAKE ENGINEERING, 2012, 10 (05) : 1431 - 1454
  • [6] Prediction of lateral spread displacement: data-driven approaches
    Zheng Liu
    Solomon Tesfamariam
    Bulletin of Earthquake Engineering, 2012, 10 : 1431 - 1454
  • [7] Analysis of daily solar power prediction with data-driven approaches
    Long, Huan
    Zhang, Zijun
    Su, Yan
    APPLIED ENERGY, 2014, 126 : 29 - 37
  • [8] A Systematic Review of Data-Driven Approaches to Item Difficulty Prediction
    AlKhuzaey, Samah
    Grasso, Floriana
    Payne, Terry R.
    Tamma, Valentina
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2021), PT I, 2021, 12748 : 29 - 41
  • [9] Prediction of Protein Aggregation Propensity via Data-Driven Approaches
    Kang, Seungpyo
    Kim, Minseon
    Sun, Jiwon
    Lee, Myeonghun
    Min, Kyoungmin
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (11) : 6451 - 6463
  • [10] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Cheng Fan
    Da Yan
    Fu Xiao
    Ao Li
    Jingjing An
    Xuyuan Kang
    Building Simulation, 2021, 14 : 3 - 24