RepSGG: Novel Representations of Entities and Relationships for Scene Graph Generation

被引:3
|
作者
Liu, Hengyue [1 ]
Bhanu, Bir [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Feature extraction; Visualization; Semantics; Task analysis; Detectors; Shape; Training; Scene graph generation; visual relationship detection; long-tailed learning; human-Object interaction;
D O I
10.1109/TPAMI.2024.3402143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene Graph Generation (SGG) has achieved significant progress recently. However, most previous works rely heavily on fixed-size entity representations based on bounding box proposals, anchors, or learnable queries. As each representation's cardinality has different trade-offs between performance and computation overhead, extracting highly representative features efficiently and dynamically is both challenging and crucial for SGG. In this work, a novel architecture called RepSGG is proposed to address the aforementioned challenges, formulating a subject as queries, an object as keys, and their relationship as the maximum attention weight between pairwise queries and keys. With more fine-grained and flexible representation power for entities and relationships, RepSGG learns to sample semantically discriminative and representative points for relationship inference. Moreover, the long-tailed distribution also poses a significant challenge for generalization of SGG. A run-time performance-guided logit adjustment (PGLA) strategy is proposed such that the relationship logits are modified via affine transformations based on run-time performance during training. This strategy encourages a more balanced performance between dominant and rare classes. Experimental results show that RepSGG achieves the state-of-the-art or comparable performance on the Visual Genome and Open Images V6 datasets with fast inference speed, demonstrating the efficacy and efficiency of the proposed methods.
引用
收藏
页码:8018 / 8035
页数:18
相关论文
共 50 条
  • [21] Review on scene graph generation methods
    Monesh, S.
    Senthilkumar, N. C.
    MULTIAGENT AND GRID SYSTEMS, 2024, 20 (02) : 129 - 160
  • [22] Scene Graph Generation: A comprehensive survey
    Li, Hongsheng
    Zhu, Guangming
    Zhang, Liang
    Jiang, Youliang
    Dang, Yixuan
    Hou, Haoran
    Shen, Peiyi
    Zhao, Xia
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    NEUROCOMPUTING, 2024, 566
  • [23] Multimodal graph inference network for scene graph generation
    Duan, Jingwen
    Min, Weidong
    Lin, Deyu
    Xu, Jianfeng
    Xiong, Xin
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8768 - 8783
  • [24] MuRelSGG: Multimodal Relationship Prediction for Neurosymbolic Scene Graph Generation
    Khan, Muhammad Junaid
    Siddiqui, Adil Masood
    Khan, Hamid Saeed
    Akram, Faisal
    Khan, M. Jaleed
    IEEE ACCESS, 2025, 13 : 47042 - 47054
  • [25] A Novel End-to-End Transformer for Scene Graph Generation
    Ren, Chengkai
    Liu, Xiuhua
    Cao, Mengyuan
    Zhang, Jian
    Wang, Hongwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [26] RelTR: Relation Transformer for Scene Graph Generation
    Cong, Yuren
    Yang, Michael Ying
    Rosenhahn, Bodo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11169 - 11183
  • [27] Boosting Scene Graph Generation with Contextual Information
    Sun, Shiqi
    Huang, Danlan
    Tao, Xiaoming
    Pan, Chengkang
    Liu, Guangyi
    Chen, Changwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (02)
  • [28] Toward Region-Aware Attention Learning for Scene Graph Generation
    Liu, An-An
    Tian, Hongshuo
    Xu, Ning
    Nie, Weizhi
    Zhang, Yongdong
    Kankanhalli, Mohan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7655 - 7666
  • [29] An Approach to Generate a Caption for an Image Collection Using Scene Graph Generation
    Phueaksri, Itthisak
    Kastner, Marc A.
    Kawanishi, Yasutomo
    Komamizu, Takahiro
    Ide, Ichiro
    IEEE ACCESS, 2023, 11 : 128245 - 128260
  • [30] Adaptive Fine-Grained Predicates Learning for Scene Graph Generation
    Lyu, Xinyu
    Gao, Lianli
    Zeng, Pengpeng
    Shen, Heng Tao
    Song, Jingkuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13921 - 13940