Machine learning methods for automated interstellar object classification with LSST

被引:0
作者
Cloete, Richard [1 ]
Veres, Peter [1 ]
Loeb, Abraham [1 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 15, Cambridge, MA 02138 USA
关键词
methods: data analysis; methods: numerical; methods: statistical; astronomical databases: miscellaneous; astrometry; minor planets; asteroids:; general; PAN-STARRS; NUMBER DENSITY; OUMUAMUA; U1; LINKING; ORIGIN; PLANETESIMALS; ACCELERATION; SPECTROSCOPY; 1I/OUMUAMUA;
D O I
10.1051/0004-6361/202451118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Legacy Survey of Space and Time (LSST), to be conducted with the Vera C. Rubin Observatory, is poised to revolutionize our understanding of the Solar System by providing an unprecedented wealth of data on various objects, including the elusive interstellar objects (ISOs). Detecting and classifying ISOs is crucial for studying the composition and diversity of materials from other planetary systems. However, the rarity and brief observation windows of ISOs, coupled with the vast quantities of data to be generated by LSST, create significant challenges for their identification and classification. Aims. This study aims to address these challenges by exploring the application of machine learning algorithms to the automated classification of ISO tracklets in simulated LSST data. Methods. We employed various machine learning algorithms, including random forests (RFs), stochastic gradient descent (SGD), gradient boosting machines (GBMs), and neural networks (NNs), to classify ISO tracklets in simulated LSST data. Results. Our results demonstrate that GBM and RF algorithms outperform SGD and NN algorithms in accurately distinguishing ISOs from other Solar System objects. RF analysis shows that many derived Digest2 values are more important than direct observables (right ascension, declination, and magnitude) in classifying ISOs from the LSST tracklets. The GBM model achieves the highest precision, recall, and F1 score, with values of 0.9987, 0.9986, and 0.9987, respectively. Conclusions. These findings lay the foundation for the development of an efficient and robust automated system for ISO discovery using LSST data, paving the way for a deeper understanding of the materials and processes that shape planetary systems beyond our own. The integration of our proposed machine learning approach into the LSST data processing pipeline will optimize the survey's potential for identifying these rare and valuable objects, enabling timely follow-up observations and further characterization.
引用
收藏
页数:8
相关论文
共 66 条
[1]   Col-OSSOS: Colors of the Interstellar Planetesimal 1I/'Oumuamua [J].
Bannister, Michele T. ;
Schwamb, Megan E. ;
Fraser, Wesley C. ;
Marsset, Michael ;
Fitzsimmons, Alan ;
Benecchi, Susan D. ;
Lacerda, Pedro ;
Pike, Rosemary E. ;
Kavelaars, J. J. ;
Smith, Adam B. ;
Stewart, Sunny O. ;
Wang, Shiang-Yu ;
Lehner, Matthew J. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 851 (02)
[2]   Acceleration of 1I/'Oumuamua from radiolytically produced H2 in H2O ice [J].
Bergner, Jennifer B. B. ;
Seligman, Darryl Z. Z. .
NATURE, 2023, 615 (7953) :610-+
[3]   Could Solar Radiation Pressure Explain 'Oumuamua's Peculiar Acceleration? [J].
Blab, Shmuel ;
Loeb, Abraham .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 868 (01)
[4]   Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations [J].
Bolin, Bryce T. ;
Lisse, Carey M. ;
Kasliwal, Mansi M. ;
Quimby, Robert ;
Tan, Hanjie ;
Copperwheat, Chris M. ;
Lin, Zhong-Yi ;
Morbidelli, Alessandro ;
Abe, Lyu ;
Bendjoya, Philippe ;
Burdge, Kevin B. ;
Coughlin, Michael ;
Fremling, Christoffer ;
Itoh, Ryosuke ;
Koss, Michael ;
Masci, Frank J. ;
Maeno, Syota ;
Mamajek, Eric E. ;
Marocco, Federico ;
Murata, Katsuhiro ;
Rivet, Jean-Pierre ;
Sitko, Michael L. ;
Stern, Daniel ;
Vernet, David ;
Walters, Richard ;
Yan, Lin ;
Andreoni, Igor ;
Bhalerao, Varun ;
Bodewits, Dennis ;
De, Kishalay ;
Deshmukh, Kunal P. ;
Bellm, Eric C. ;
Blagorodnova, Nadejda ;
Buzasi, Derek ;
Cenko, S. Bradley ;
Chang, Chan-Kao ;
Chojnowski, Drew ;
Dekany, Richard ;
Duev, Dmitry A. ;
Graham, Matthew ;
Juric, Mario ;
Kulkarni, Shrinivas R. ;
Kupfer, Thomas ;
Mahabal, Ashish ;
Neill, James D. ;
Ngeow, Chow-Choong ;
Penprase, Bryan ;
Riddle, Reed ;
Rodriguez, Hector ;
Smith, Roger M. .
ASTRONOMICAL JOURNAL, 2020, 160 (01)
[5]   APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/'Oumuamua [J].
Bolin, Bryce T. ;
Weaver, Harold A. ;
Fernandez, Yanga R. ;
Lisse, Carey M. ;
Huppenkothen, Daniela ;
Jones, R. Lynne ;
Juric, Mario ;
Moeyens, Joachim ;
Schambeau, Charles A. ;
Slater, Colin. T. ;
Ivezic, Zeljko ;
Connolly, Andrew J. .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 852 (01)
[6]   Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion [J].
Bottke, WF ;
Durda, DD ;
Nesvorny, D ;
Jedicke, R ;
Morbidelli, A ;
Vokrouhlicky, D ;
Levison, HE .
ICARUS, 2005, 179 (01) :63-94
[7]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Coupling dynamical and collisional evolution of small bodies: an application to the early ejection of planetesimals from the Jupiter-Saturn region [J].
Charnoz, S ;
Morbidelli, A .
ICARUS, 2003, 166 (01) :141-156
[10]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)