FedWFC: Federated learning with weighted fuzzy clustering for handling heterogeneous data in MIoT networks

被引:1
作者
Sun, Le [1 ]
Liu, Shunqi [1 ]
Muhammad, Ghulam [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Jiangsu Collaborat Innovat Ctr Atmospher Envi, Dept Jiangsu Collaborat Innovat, Nanjing 210044, Peoples R China
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
关键词
Medical Internet of Things; Federated learning; Statistical heterogeneity; Importance weight; Fuzzy k-means clustering;
D O I
10.1016/j.aej.2024.10.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The diversity of sources and uneven distribution of medical data contributes to the statistical heterogeneity within the Medical Internet of Things (MIoT) networks. In this context, comprehensive analysis of patient data is imperative to provide more precise diagnoses and treatment strategies, rendering personalized medical treatment indispensable. Moreover, the transmission of medical data over networks raises concerns regarding data privacy, necessitating thorough consideration. To address these challenges, we propose FedWFC, a federated learning method that combines a novel importance weight with fuzzy k-means clustering to effectively handle the heterogeneous medical data in MIoT networks. Firstly, we utilize fuzzy k-means for clustering and partitioning local model parameters from MIoT devices, enabling centralized updates of multiple global models based on these clusters. This cluster-centric approach streamlines personalized updates for local models. Secondly, the introduction of the new importance weight allows us to tighten the optimization error bound for global model updates. Experiments show that FedWFC improves the macro F1 score by 4.24% and the micro accuracy by 4.99% compared with existing methods, highlighting its effectiveness in MIoT data processing.
引用
收藏
页码:194 / 202
页数:9
相关论文
共 37 条
  • [1] Personalized Real-Time Federated Learning for Epileptic Seizure Detection
    Baghersalimi, Saleh
    Teijeiro, Tomas
    Atienza, David
    Aminifar, Amir
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) : 898 - 909
  • [2] On-line expectation-maximization algorithm for latent data models
    Cappe, Olivier
    Moulines, Eric
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 593 - 613
  • [3] Federated reinforcement learning based task offloading approach for MEC-assisted WBAN-enabled IoMT
    Consul, Prakhar
    Budhiraja, Ishan
    Arora, Ruchika
    Garg, Sahil
    Choi, Bong Jun
    Hossain, M. Shamim
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 86 : 56 - 66
  • [4] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [5] Short-term traffic flow prediction: An ensemble machine learning approach
    Dai, Guowen
    Tang, Jinjun
    Luo, Wang
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 74 : 467 - 480
  • [6] EUCLIDEAN DISTANCE MAPPING
    DANIELSSON, PE
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (03): : 227 - 248
  • [7] An Efficient Framework for Clustered Federated Learning
    Ghosh, Avishek
    Chung, Jichan
    Yin, Dong
    Ramchandran, Kannan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (12) : 8076 - 8091
  • [8] Knowledge Distillation: A Survey
    Gou, Jianping
    Yu, Baosheng
    Maybank, Stephen J.
    Tao, Dacheng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (06) : 1789 - 1819
  • [9] Gutman D, 2016, Arxiv, DOI [arXiv:1605.01397, DOI 10.48550/ARXIV.1605.01397]
  • [10] Federated learning enables 6 G communication technology: Requirements, applications, and integrated with intelligence framework
    Hasan, Mohammad Kamrul
    Habib, A. K. M. Ahasan
    Islam, Shayla
    Safie, Nurhizam
    Ghazal, Taher M.
    Khan, Muhammad Attique
    Alzahrani, Ahmed Ibrahim
    Alalwan, Nasser
    Kadry, Seifedine
    Masood, Anum
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 91 : 658 - 668