Multiple kernel sparse representation-based classification

被引:0
|
作者
机构
[1] [1,Chen, Si-Bao
[2] 1,Xu, Li-Xian
[3] 1,Luo, Bin
来源
Chen, Si-Bao | 1807年 / Chinese Institute of Electronics卷 / 42期
关键词
Classification (of information) - Image representation - Pattern recognition;
D O I
10.3969/j.issn.0372-2112.2014.09.022
中图分类号
学科分类号
摘要
Sparse representation based classification (SRC) and kernel methods are applied in many pattern recognition problems. In order to improve the classification accuracy, we propose multiple kernel sparse representation based classification (MKSRC). A fast optimization iteration method to solve sparse coefficients and the associated convergence proof to global optimal solution are given. In order to update the kernel weights of MKSRC, two different updating methods and the associated comparison are given. The experimental results on three face image databases show the superiority of the proposed multiple kernel sparse representation based classification. ©, 2014, Chinese Institute of Electronics. All right reserved.
引用
收藏
相关论文
共 50 条
  • [41] Kernel Sparse Representation Based Classification for Undersampled Problem
    Fan, Zizhu
    Ni, Ming
    Zhu, Qi
    Lu, Yuwu
    2014 INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), 2014,
  • [42] Sparse Representation-Based Heartbeat Classification Using Independent Component Analysis
    Huang, Hui Fang
    Hu, Guang Shu
    Zhu, Li
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) : 1235 - 1247
  • [43] Kernel Homotopy Based Sparse Representation For Object Classification
    Kang, Cuicui
    Liao, Shengcai
    Xiang, Shiming
    Pan, Chunhong
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1479 - 1482
  • [44] Sparse representation-based classification using generalized weighted extended dictionary
    Xiaoning Song
    Changbin Shao
    Xibei Yang
    Xiaojun Wu
    Soft Computing, 2017, 21 : 4335 - 4348
  • [45] Sparse Representation-Based Heartbeat Classification Using Independent Component Analysis
    Hui Fang Huang
    Guang Shu Hu
    Li Zhu
    Journal of Medical Systems, 2012, 36 : 1235 - 1247
  • [46] Sparse representation-based classification algorithm for optical Tibetan character recognition
    Huang, Heming
    Da, Feipeng
    OPTIK, 2014, 125 (03): : 1034 - 1037
  • [47] Locality-preserving sparse representation-based classification in hyperspectral imagery
    Gao, Lianru
    Yu, Haoyang
    Zhang, Bing
    Li, Qingting
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [48] Virtual samples and sparse representation-based classification algorithm for face recognition
    Peng, Yali
    Li, Lingjun
    Liu, Shigang
    Li, Jun
    Cao, Han
    IET COMPUTER VISION, 2019, 13 (02) : 172 - 177
  • [49] Compressive Informative Sparse Representation-Based Power Quality Events Classification
    Babakmehr, Mohammad
    Sartipizadeh, Hossein
    Simoes, Marcelo Godoy
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (02) : 909 - 921
  • [50] SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Jia, Sen
    Deng, Bin
    Jia, Xiuping
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3302 - 3305