Representation theorems for normed modules

被引:1
作者
Di Marino, Simone [1 ]
Lucic, Danka [2 ]
Pasqualetto, Enrico [3 ]
机构
[1] Univ Genova DIMA, MaLGa, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[3] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
关键词
Normed module; Measurable Banach bundle; Lifting theory; Serre-Swan theorem; SPACES;
D O I
10.1007/s13398-024-01682-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the structure theory of normed modules, which have been introduced by Gigli. The aim is twofold: to extend von Neumann's theory of liftings to the framework of normed modules, thus providing a notion of precise representative of their elements; to prove that each separable normed module can be represented as the space of sections of a measurable Banach bundle. By combining our representation result with Gigli's differential structure, we eventually show that every metric measure space (whose Sobolev space is separable) is associated with a cotangent bundle in a canonical way.
引用
收藏
页数:43
相关论文
共 28 条
[1]  
ALIPRANTIS C., 1999, Infinite-dimensional analysis. A hitchhiker's guide, DOI 10.1007/3-540-29587-9
[2]  
Ambrosio L, 2015, ADV STU P M, V67, P1
[3]   Equivalent definitions of BV space and of total variation on metric measure spaces [J].
Ambrosio, Luigi ;
Di Marino, Simone .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) :4150-4188
[4]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[5]  
Ambrosio L, 2008, LECT MATH, P1
[6]  
Benatti L., 2018, A review of differential calculus on metric measure spaces via -normed modules
[7]  
Bessaga C., 1975, Polska Akademia Nauk. Instytut Matematyczny, Monografie matematyczne
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]  
Fremlin D., 2011, Measure Theory: Measure algebras, V3
[10]  
Gigli N., 2020, Calc. Variations Partial Differ. Equ, V60, P1